Learn More
We report a method for the structure-based calculation of the spectral density of the pigment-protein coupling in light-harvesting complexes that combines normal-mode analysis with the charge density coupling (CDC) and transition charge from electrostatic potential (TrEsp) methods for the computation of site energies and excitonic couplings, respectively.(More)
The linear optical spectra (absorbance, linear dichroism, circular dichroism, fluorescence) of the CP43 (PsbC) antenna of the photosystem II core complex (PSIIcc) pertaining to the S0 → S1 (QY) transitions of the chlorophyll (Chl) a pigments are simulated by applying a combined quantum chemical/electrostatic method to obtain excitonic couplings and local(More)
Photosystem II (PSII) catalyzes a key step in photosynthesis, the oxidation of water to oxygen. Excellent structural models exist for the dimeric PSII core complex of cyanobacteria, but higher order physiological assemblies readily dissociate when solubilized from the native thylakoid membrane with detergent. Here, we describe the crystallization of PSII(More)
Photosystem II (PSII), the light-driven water:plastoquinone (PQ) oxidoreductase of oxygenic photosynthesis, contains a nonheme iron (NHI) at its electron acceptor side. The NHI is situated between the two PQs QA and QB that serve as one-electron transmitter and substrate of the reductase part of PSII, respectively. Among the ligands of the NHI is a(More)
The Poisson-TrEsp method (where TrEsp stands for transition charges from electrostatic potentials) has been successfully applied to calculate excitonic couplings in a variety of pigment–protein complexes. It relies on an isomorphism that allows for relating the excitonic coupling between transition densities in dielectric media to their Coulomb coupling.(More)
We provide a minimal model for a structure-based simulation of excitation energy transfer in pigment–protein complexes (PPCs). In our treatment, the PPC is assembled from its building blocks. The latter are defined such that electron exchange occurs only within, but not between these units. The variational principle is applied to investigate how the Coulomb(More)
The exciton Hamiltonian pertaining to the first excited states of chlorophyll (Chl) a and b pigments in the minor light-harvesting complex CP29 of plant photosystem II is determined based on the recent crystal structure at 2.8 Å resolution applying a combined quantum chemical/electrostatic approach as used earlier for the major light-harvesting complex(More)
The spectral properties and dynamics of the fluorescence emission of photosystem II core complexes are investigated by single-molecule spectroscopy at 1.6 K. The emission spectra are dominated by sharp zero-phonon lines (ZPLs). The sharp ZPLs are the result of weak to intermediate exciton-vibrational coupling and slow spectral diffusion. For several data(More)
  • 1