Frank L. Powell

Learn More
The ventilatory response to hypoxia depends on the pattern and intensity of hypoxic exposure and involves several physiological mechanisms. These mechanisms differ in their effect (facilitation or depression) on different components of ventilation (tidal volume and frequency) and in their time course (seconds to years). Some mechanisms last long enough to(More)
The opinions set forth in this report are those of the committee members and do not represent the Food and Drug Administration in any way. R osacea is well recognized as a chronic cuta-neous disorder primarily of the convexities of the central face (cheeks, chin, nose, and central forehead), often characterized by remissions and exacerbations. Based on(More)
Isocapnic hypoxic ventilatory response (HVR) and hematological variables were measured in nine adult males (age: 29.3+/-3.4) exposed to normobaric intermittent hypoxia (IH, 2 h daily at FI(O(2))=0.13, equivalent to 3800 m altitude) for 12 days. Mean HVR significantly increased during IH, however, after reaching a peak on Day 5 (0.79+/-0.12 vs. 0.27+/-0.11(More)
Time-dependent ventilatory responses to episodic and continuous isocapnic hypoxia were measured in unidirectionally ventilated, awake ducks. Three protocols were used: (1) ten 3-min episodes of moderate hypoxia (10% O(2)) with 5-min normoxic intervals; (2) three 3-min episodes of severe hypoxia (8% O(2)) with 5-min normoxic intervals; and (3) 30-min of(More)
Skin plays an essential role, mediated in part by its remarkable vascular plasticity, in adaptation to environmental stimuli. Certain vertebrates, such as amphibians, respond to hypoxia in part through the skin; but it is unknown whether this tissue can influence mammalian systemic adaptation to low oxygen levels. We have found that epidermal deletion of(More)
We studied the CO(2)/H(+)-chemosensitive responses of individual solitary complex (SC) neurons from adult rats by simultaneously measuring the intracellular pH (pH(i)) and electrical responses to hypercapnic acidosis (HA). SC neurons were recorded using the blind whole cell patch-clamp technique and loading the soma with the pH-sensitive dye pyranine(More)
To test the hypothesis that the hypoxic ventilatory response (HVR) of an individual is a constant unaffected by acclimatization, isocapnic 5-min step HVR, as delta VI/delta SaO2 (l.min-1.%-1, where VI is inspired ventilation and SaO2 is arterial O2 saturation), was tested in six normal males at sea level (SL), after 1-5 days at 3,810-m altitude (AL1-3), and(More)
Factor inhibiting HIF-1alpha (FIH) is an asparaginyl hydroxylase. Hydroxylation of HIF-alpha proteins by FIH blocks association of HIFs with the transcriptional coactivators CBP/p300, thus inhibiting transcriptional activation. We have created mice with a null mutation in the FIH gene and found that it has little or no discernable role in mice in altering(More)
Chronic exposure to hypoxia results in a time-dependent increase in ventilation called ventilatory acclimatization to hypoxia. Increased O(2) sensitivity of arterial chemoreceptors contributes to ventilatory acclimatization to hypoxia, but other mechanisms have also been hypothesized. We designed this experiment to determine whether central nervous system(More)
When exposed to a hypoxic environment the body's first response is a reflex increase in ventilation, termed the hypoxic ventilatory response (HVR). With chronic sustained hypoxia (CSH), such as during acclimatization to high altitude, an additional time-dependent increase in ventilation occurs, which increases the HVR. This secondary increase persists after(More)