Learn More
The ventilatory response to hypoxia depends on the pattern and intensity of hypoxic exposure and involves several physiological mechanisms. These mechanisms differ in their effect (facilitation or depression) on different components of ventilation (tidal volume and frequency) and in their time course (seconds to years). Some mechanisms last long enough to(More)
The terminal differentiation of myelinating glia involves complex interactions that culminate in the formation of myelin. The POU domain transcription factor Tst-1/Oct-6/SCIP is expressed transiently during myelination, and we report here that it has a critical role in this developmental process. Deletion of the Tst-1/Oct-6/SCIP gene produces a severe(More)
Chronic hypoxia increases the sensitivity of the central nervous system to afferent input from carotid body chemoreceptors. We hypothesized that this process involves N-methyl-D-aspartate (NMDA) receptor-mediated mechanisms and predicted that chronic hypoxia would change the effect of the NMDA receptor blocker dizocilpine (MK-801) on the poikilocapnic(More)
Chronic exposure to hypoxia results in a time-dependent increase in ventilation called ventilatory acclimatization to hypoxia. Increased O(2) sensitivity of arterial chemoreceptors contributes to ventilatory acclimatization to hypoxia, but other mechanisms have also been hypothesized. We designed this experiment to determine whether central nervous system(More)
When exposed to a hypoxic environment the body's first response is a reflex increase in ventilation, termed the hypoxic ventilatory response (HVR). With chronic sustained hypoxia (CSH), such as during acclimatization to high altitude, an additional time-dependent increase in ventilation occurs, which increases the HVR. This secondary increase persists after(More)
We studied the effects of the ventilatory stimulant doxapram to test the hypothesis that chronic hypoxia increases the translation of carotid body afferent input into ventilatory motor efferent output by the central nervous system. Chronic hypoxia (inspired Po(2) = 70 Torr, 2 days) significantly increased the ventilatory response to an intravenous infusion(More)
Ventilatory acclimatization to hypoxia is the time-dependent increase in ventilation that occurs with chronic exposure to hypoxia. Despite decades of research, the physiological mechanisms that increase the hypoxic ventilatory response during chronic hypoxia are not well understood. This review focuses on adaptations within the central nervous system (CNS)(More)
Recently, inflammatory processes have been shown to increase O(2)-sensitivity of the carotid body during chronic sustained hypoxia [Liu, X., He, L., Stensaas, L., Dinger, B., Fidone, S., 2009. Adaptation to chronic hypoxia involves immune cell invasion and increased expression of inflammatory cytokines in rat carotid body. Am. J. Physiol. Lung Cell Mol.(More)
When exposed to a hypoxic environment, the body's first response is a reflex increase in ventilation, termed the hypoxic ventilatory response (HVR). With chronic sustained hypoxia (CSH), such as during acclimatization to high altitude, an additional time-dependent increase in ventilation occurs, which increases the HVR and is termed ventilatory(More)
The opinions set forth in this report are those of the committee members and do not represent the Food and Drug Administration in any way. R osacea is well recognized as a chronic cuta-neous disorder primarily of the convexities of the central face (cheeks, chin, nose, and central forehead), often characterized by remissions and exacerbations. Based on(More)