Frank Kari

Learn More
  • S E Dunn, F W Kari, +4 authors J C Barrett
  • 1997
Diet contributes to over one-third of cancer deaths in the Western world, yet the factors in the diet that influence cancer are not elucidated. A reduction in caloric intake dramatically slows cancer progression in rodents, and this may be a major contribution to dietary effects on cancer. Insulin-like growth factor I (IGF-I) is lowered during dietary(More)
Caloric restriction has been shown to alter a broad range of immunological end points in both experimental animals and humans. The objective of this study was to investigate the effect of short-term moderate feed restriction (25% reduction) on allergic immune responses in Brown Norway rats. After 3 weeks of acclimation to their feed regimens, rats were(More)
BACKGROUND Tristetraprolin (TTP/ZFP36) family proteins have anti-inflammatory activity by binding to and destabilizing pro-inflammatory mRNAs such as Tnf mRNA, and represent a potential therapeutic target for inflammation-related diseases. Tea has anti-inflammatory properties but the molecular mechanisms have not been completely elucidated. We hypothesized(More)
In the National Toxicology Program 2-year inhalation study of dichloromethane (DCM), there was a significant increase in pulmonary neoplasms in female B6C3F1 mice exposed to 2000 ppm (overall rates of 30/48 versus 5/50 in control). Replicative DNA synthesis was examined to evaluate the potential role of treatment-induced lung cell proliferation on pulmonary(More)
Epidemiologic studies support the protective role of dietary antioxidants in preventing cancer. However, emerging evidence from clinical trials and laboratory data suggest that in some cases individual antioxidant supplements may actually exacerbate carcinogenesis. Our goal was to explore these paradoxical activities in a rodent model that possesses(More)
The effects of varying dietary protein concentrations on the metabolism of 1,2-dimethylhydrazine (DMH) to mutagenic products by male C57BL/6 X C3H F mice were assayed by in vivo and in vitro methods. DMH and its metabolite, azoxymethane (AOM), did not increase the mutation frequency of Salmonella typhimurium (strain G-46) in vitro alone or in the presence(More)
  • 1