Learn More
The first toroidal, gyrokinetic, electromagnetic simulations of small scale plasma turbulence are presented. The turbulence considered is driven by gradients in the electron temperature. It is found that electron temperature gradient (ETG) turbulence can induce experimentally relevant thermal losses in magnetic confinement fusion devices. For typical(More)
The understanding and prediction of transport due to plasma microturbulence is a key open problem in modern plasma physics, and a Grand Challenge for fusion energy research. Ab initio simulations of such small-scale, low-frequency turbulence are to be based on the gyrokinetic equations, a set of nonlinear integro-differential equations in reduced(More)
The anomalous (i.e., non-Gaussian) dynamics of particles subject to a deterministic acceleration and a series of "random kicks" is studied. Based on an extension of the concept of continuous time random walks to position-velocity space, a new fractional equation of the Kramers-Fokker-Planck type is derived. The associated collision operator necessarily(More)
In order to describe non-Gaussian kinetics in weakly damped systems, the concept of continuous time random walks is extended to particles with finite inertia. One thus obtains a generalized Kramers-Fokker-Planck equation, which retains retardation effects, i.e., nonlocal couplings in time and space. It is shown that despite this complexity, exact solutions(More)
We formulate the generalized master equation for a class of continuous-time random walks in the presence of a prescribed deterministic evolution between successive transitions. This formulation is exemplified by means of an advection-diffusion and a jump-diffusion scheme. Based on this master equation, we also derive reaction-diffusion equations for(More)
Analytical and numerical work is used in tandem to address the problem of turbulent transport of energetic ions in magnetized plasmas. It is shown that orbit averaging is not valid under rather generic conditions, and that perpendicular decorrelation effects lead to a slow 1=E decay of the electrostatic particle diffusivity of beam ions, while the(More)
The experimental conditions under which tokamak turbulence at hyperfine (electron gyroradius) scales is predicted to be significant and observable are described. The first quantitative predictions of fluctuation amplitudes, spectral features, and the associated electron energy transport are presented. A novel theoretical model which quantitatively describes(More)
Cyclic, nonhierarchical interactions among biological species represent a general mechanism by which ecosystems are able to maintain high levels of biodiversity. However, species coexistence is often possible only in spatially extended systems with a limited range of dispersal, whereas in well-mixed environments models for cyclic competition often lead to a(More)