Learn More
Some cytochrome P450 catalyzed reactions show atypical kinetics, and these kinetic processes can be grouped into five categories: activation, autoactivation, partial inhibition, substrate inhibition, and biphasic saturation curves. A two-site model in which the enzyme can bind two substrate molecules simultaneously is presented which can be used to describe(More)
The principal taxol biotransformation reaction of humans and of human hepatic in vitro preparations is 6 alpha-hydroxylation of the taxane ring, but a separate, minor hydroxylation pathway (metabolite B formation) also exists. Taxol metabolism was studied using membrane fractions from Hep G2 cells infected with recombinant vaccinia viruses that contain(More)
Mice lacking the nuclear bile acid receptor FXR/BAR developed normally and were outwardly identical to wild-type littermates. FXR/BAR null mice were distinguished from wild-type mice by elevated serum bile acid, cholesterol, and triglycerides, increased hepatic cholesterol and triglycerides, and a proatherogenic serum lipoprotein profile. FXR/BAR null mice(More)
To gain insight into the function of peroxisome proliferator-activated receptor (PPAR) isoforms in rodents, we disrupted the ligand-binding domain of the alpha isoform of mouse PPAR (mPPAR alpha) by homologous recombination. Mice homozygous for the mutation lack expression of mPPAR alpha protein and yet are viable and fertile and exhibit no detectable gross(More)
Previous kinetic studies have identified a high-affinity (S)-warfarin 7-hydroxylase present in human liver microsomes which appears to be responsible for the termination of warfarin's biological activity. Inhibition of the formation of (S)-7-hydroxywarfarin, the inactive, major metabolite of racemic warfarin in humans, is known to be the cause of several of(More)
The drug metabolizing enzyme cytochrome P450 3A4 (CYP3A4) is thought to be involved in the metabolism of nearly 50% of all the drugs currently prescribed. Alteration in the activity or expression of this enzyme seems to be a key predictor of drug responsiveness and toxicity. Currently available studies indicate that the ligand-activated nuclear receptors(More)
Three cDNAs, designated IIA3, IIA3v, and IIA4, coding for P450s in the CYP2A gene subfamily were isolated from a lambda gt11 library prepared from human hepatic mRNA. Only three nucleotide differences and a single amino acid difference, Leu160----His, were found between IIA3 and IIA3v, indicating that they are probably allelic variants. IIA4 displayed 94%(More)
A unique characteristic of the CYP3A subfamily of cytochrome P450 enzymes is their ability to be activated by certain compounds. It is reported that CYP3A4-catalyzed phenanthrene metabolism is activated by 7,8-benzoflavone and that 7,8-benzoflavone serves as a substrate for CYP3A4. Kinetic analyses of these two substrates show that 7,8-benzoflavone(More)
1. We evaluated the specificity of 15 substrates and 14 inhibitors of the cytochrome P450s using nine human P450 forms expressed in HepG2 cells using a recombinant vaccinia virus and also in human liver microsomes. 2. Coumarin, 7-ethoxyresorufin, 7-benzyloxyresorufin, tolbutamide, aniline and diazepam were form-selective substrates towards CYP2A6, the CYP1A(More)
The numerous functions of the liver are controlled primarily at the transcriptional level by the concerted actions of a limited number of hepatocyte-enriched transcription factors (hepatocyte nuclear factor 1alpha [HNF1alpha], -1beta, -3alpha, -3beta, -3gamma, -4alpha, and -6 and members of the c/ebp family). Of these, only HNF4alpha (nuclear receptor 2A1)(More)