Learn More
Root development of Arabidopsis, Zea mays (maize) and Oryza sativa (rice) differs in both overall architecture and the anatomy of individual roots. In maize and rice, the post-embryonic shoot-borne root system becomes the major backbone of the root stock; in Arabidopsis, the embryonic root system formed by a simple primary root and its lateral roots remains(More)
The exocyst, an octameric tethering complex and effector of Rho and Rab GTPases, facilitates polarized secretion in yeast and animals. Recent evidence implicates three plant homologs of exocyst subunits (SEC3, SEC8, and EXO70A1) in plant cell morphogenesis. Here, we provide genetic, cell biological, and biochemical evidence that these and other predicted(More)
The phenomenon of heterosis describes the increased agronomic performance of heterozygous F(1) plants compared to their homozygous parental inbred plants. Heterosis is manifested during the early stages of root development in maize. The goal of this study was to identify nonadditive gene expression in primary roots of maize hybrids compared to the average(More)
The maize (Zea mays L.) Aux/IAA protein RUM1 (ROOTLESS WITH UNDETECTABLE MERISTEMS 1) controls seminal and lateral root initiation. To identify RUM1-dependent gene expression patterns, RNA-Seq of the differentiation zone of primary roots of rum1 mutants and the wild type was performed in four biological replicates. In total, 2 801 high-confidence maize(More)
Heterosis describes the superior performance of heterozygous hybrid plants over their homozygous parental inbred lines. Despite the rediscovery of this phenomenon a century ago and its paramount agronomic importance, the genetic and molecular basis of heterosis remains enigmatic. Recently, various pioneer studies described differences in genome organization(More)
The rth3 (roothairless 3) mutant is specifically affected in root hair elongation. We report here the cloning of the rth3 gene via a PCR-based strategy (amplification of insertion mutagenized sites) and demonstrate that it encodes a COBRA-like protein that displays all the structural features of a glycosylphosphatidylinositol anchor. Genes of the COBRA(More)
Mineral nutrients are distributed in a non-uniform manner in the soil. Plasticity in root responses to the availability of mineral nutrients is believed to be important for optimizing nutrient acquisition. The response of root architecture to heterogeneous nutrient availability has been documented in various plant species, and the molecular mechanisms(More)
Widespread and more frequently occurring drought conditions are a consequence of global warming and increase the demand for tolerant crop varieties to feed the growing world population. A better understanding of the molecular mechanisms underlying the water deficit response of crops will enable targeted breeding strategies to develop robust cultivars. In(More)
A reference database of the major soluble proteins of the primary root of the maize inbred line B73 was generated 5 days after germination (DAG) using a combination of 2-DE and MALDI-TOF MS. A total of 302 protein spots were detected with CBB in a pH 4-7 range and 81 proteins representing 74 distinct Genbank accessions were identified. Only 28% of the major(More)
Maize (Zea mays) displays an exceptional level of structural genomic diversity, which is likely unique among higher eukaryotes. In this study, we surveyed how the genetic divergence of two maize inbred lines affects the transcriptomic landscape in four different primary root tissues of their F1-hybrid progeny. An extreme instance of complementation was(More)