Learn More
During mitosis, the phosphatidylinositol-3 (PI-3) family-related DNA damage checkpoint kinases ATM and ATR were found on the centrosomes of human cells. ATRIP, an interaction partner of ATR, as well as Chk1 and Chk2, the downstream targets of ATR or ATM, were also localized to the centrosomes. Surprisingly, the DNA-PK inhibitor vanillin enhanced the level(More)
Full-length human nuclear DNA helicase II (NDH II) was cloned and overexpressed in a baculovirus-derived expression system. Recombinant NDH II unwound both DNA and RNA. Limited tryptic digestion produced active helicases with molecular masses of 130 and 100 kDa. The 130-kDa helicase missed a glycine-rich domain (RGG-box) at the carboxyl terminus, while the(More)
Nuclear DNA helicase II (NDH II) has been purified to near-homogeneity by exploiting its high affinity to poly[(rI).(rC)]-agarose. The purified enzyme was obtained as two catalytically active forms of 130- and 100-kDa molecular mass, respectively. After treatment with cyanogen bromide, the separated polypeptides displayed very similar digestion patterns.(More)
Spider silk is predominantly composed of structural proteins called spider fibroins or spidroins. The major ampullate silk that forms the dragline and the cobweb's frame threads of Nephila clavipes is believed to be a composite of two spidroins, designated as Masp 1 and 2. Specific antibodies indeed revealed the presence of Masp 1 and 2 specific epitopes in(More)
The spider silk gene family to the current date has been developed by gene duplication and homogenization events as well as conservation of crucial sequence parts. These evolutionary processes have created an amazing diversity of silk types each associated with specific properties and functions. In addition, they have led to allelic and gene variants within(More)
A major issue of current virology concerns the characterization of cellular proteins that operate as functional components of the viral multiplication process. Here we describe a group of host factors designated as 'NFAR proteins' that are recruited by the replication machinery of bovine viral diarrhea virus, a close relative of the human pathogen hepatitis(More)
Although the mechanical aspects of the single-stranded DNA (ssDNA) binding activity of human replication protein A (RPA) have been extensively studied, only limited information is available about its interaction with other physiologically relevant DNA structures. RPA interacts with partial DNA duplexes that resemble DNA intermediates found in the processes(More)
Highly purified p53 protein from different sources was able to degrade DNA with a 3'-to-5' polarity, yielding deoxynucleoside monophosphates as reaction products. This exonuclease activity was dependent on Mg2+ and inhibited by addition of 5 mM nucleoside monophosphates. This exonuclease activity is intrinsic to the wild-type p53 protein: it copurified with(More)
Nuclear DNA helicase II (NDH II) unwinds both DNA and RNA (Zhang, S., and Grosse, F. (1994) Biochemistry 33, 3906-3912). Here, we report on the molecular cloning and sequence determination of the complementary DNA (cDNA) coding for this DNA and RNA helicase. The full-length cDNA sequence was derived from overlapping clones that were detected by(More)
TopBP1 (topoisomerase IIbeta-binding protein 1) is a BRCT [BRCA1 (breast-cancer susceptibility gene 1) C-terminal]-domain-rich protein that is structurally and functionally conserved throughout eukaryotic organisms. It is required for the initiation of DNA replication and for DNA repair and DNA damage signalling. Experiments with fission yeast and Xenopus(More)