Learn More
The brain is widely assumed to be a paradigmatic example of a complex, self-organizing system. As such, it should exhibit the classic hallmarks of nonlinearity, multistability, and "nondiffusivity" (large coherent fluctuations). Surprisingly, at least at the very large scale of neocortical dynamics, there is little empirical evidence to support this, and(More)
Variability of evoked single-trial responses despite constant input or task is a feature of large-scale brain signals recorded by fMRI. Initial evidence signified relevance of fMRI signal variability for perception and behavior. Yet the underlying intrinsic neuronal sources have not been previously substantiated. Here, we address this issue using(More)
Multistability and scale-invariant fluctuations occur in a wide variety of biological organisms from bacteria to humans as well as financial, chemical and complex physical systems. Multistability refers to noise driven switches between multiple weakly stable states. Scale-invariant fluctuations arise when there is an approximately constant ratio between the(More)
Although solutions for imaging-artifact correction in simultaneous EEG-fMRI are improving, residual artifacts after correction still considerably affect the EEG spectrum in the ultrafast frequency band above 100 Hz. Yet this band contains subtle but valuable physiological signatures such as fast gamma oscillations or evoked high-frequency (600 Hz) bursts(More)
Functional magnetic resonance imaging (fMRI) measures neural activity indirectly via its slow vascular/metabolic consequences. At a temporal resolution on the order of seconds, fMRI does not reveal the real 'language of neurons', spelt out by fast electrical discharges ('spikes') which occur on a time scale of milliseconds. In animal studies, these(More)
The human alpha (8-12 Hz) rhythm is one of the most prominent, robust, and widely studied attributes of ongoing cortical activity. Contrary to the prevalent notion that it simply "waxes and wanes," spontaneous alpha activity bursts erratically between two distinct modes of activity. We now establish a mechanism for this multistable phenomenon in(More)
Neurological disorders and physiological aging can lead to a decline of perceptual abilities. In contrast to the conventional therapeutic approach that comprises intensive training and practicing, passive repetitive sensory stimulation (RSS) has recently gained increasing attention as an alternative to countervail the sensory decline by improving perceptual(More)
Learning constitutes a fundamental property of the human brain-yet an unresolved puzzle is the profound variability of the learning success between individuals. Here we highlight the relevance of individual ongoing brain states as sources of the learning variability in exposure-based somatosensory perceptual learning. Electroencephalogram recordings of(More)
  • 1