Learn More
We describe an algorithm for the Feedback Vertex Set problem on undirected graphs, parameterized by the size k of the feedback vertex set, that runs in time O(c k n 3) where c = 10.567 and n is the number of vertices in the graph. The best previous algorithms were based on the method of bounded search trees, branching on short cycles. The best previous(More)
In this paper, we study the cluster editing problem which is fixed parameter tractable. We present the first practical implementation of a FPT based method for cluster editing, using the approach in [6,7], and compare our implementation with the straightforward greedy method and a solution based on linear programming [3]. Our experiments show that the best(More)
Fixed-parameter tractability (FPT) techniques have recently been successful in solving NP-complete problem instances of practical importance which were too large to be solved with previous methods. In this paper, we show how to enhance this approach through the addition of parallelism, thereby allowing even larger problem instances to be solved in practice.(More)
In order to facilitate query processing, the information contained in data warehouses is typically stored as a set of materialized views. Deciding which views to materialize presents a considerable challenge. The task is to select from a very large search space a set of views that minimizes view maintenance and query processing costs. Heuristic methods have(More)
The subtree prune and regraft distance (d(SPR)) between phylogenetic trees is important both as a general means of comparing phylogenetic tree topologies as well as a measure of lateral gene transfer (LGT). Although there has been extensive study on the computation of d(SPR) and similar metrics between rooted trees, much less is known about SPR distances(More)
In order to facilitate efficient query processing, the information contained in data warehouses is typically stored as a set of materialized views. Deciding which views to materialize represent a challenge in order to minimize view maintenance and query processing costs. Some existing approaches are applicable only for small problems, which are far from(More)
We study scalable parallel computational geometry algorithms for the coarse grained multicomputer model: p processors solving a problem on n data items, were each processor has O(n p) O(1) local memory and all processors are connected via some arbitrary interconnection network (e.g. mesh, hypercube, fat tree). We present O(Tsequential p + T s (n; p)) time(More)
External memory (EM) algorithms are designed for large-scale computational problems in which the size of the internal memory of the computer is only a small fraction of the problem size. Typical EM algorithms are specially crafted for the EM situation. In the past, several attempts have been made to relate the large body of work on parallel algorithms to(More)
In this paper we present a coarse-grained parallel algorithm for solving the string edit distance problem for a string A and all substrings of a string C. Our method is based on a novel CGM/BSP parallel dynamic programming technique for computing all highest scoring paths in a weighted grid graph. The algorithm requires \log p rounds/supersteps and(More)