Learn More
The potential for human neuroimaging to read out the detailed contents of a person's mental state has yet to be fully explored. We investigated whether the perception of edge orientation, a fundamental visual feature, can be decoded from human brain activity measured with functional magnetic resonance imaging (fMRI). Using statistical algorithms to classify(More)
Functional neuroimaging has successfully identified brain areas that show greater responses to visual motion and adapted responses to repeated motion directions. However, such methods have been thought to lack the sensitivity and spatial resolution to isolate direction-selective responses to individual motion stimuli. Here, we used functional magnetic(More)
Visual working memory provides an essential link between perception and higher cognitive functions, allowing for the active maintenance of information about stimuli no longer in view. Research suggests that sustained activity in higher-order prefrontal, parietal, inferotemporal and lateral occipital areas supports visual maintenance, and may account for the(More)
We used functional magnetic resonance imaging (fMRI) to monitor stimulus-selective responses of the human fusiform face area (FFA) and parahippocampal place area (PPA) during binocular rivalry in which a face and a house stimulus were presented to different eyes. Though retinal stimulation remained constant, subjects perceived changes from house to face(More)
During binocular rivalry, conflicting monocular images compete for access to consciousness in a stochastic, dynamical fashion. Recent human neuroimaging and psychophysical studies suggest that rivalry entails competitive interactions at multiple neural sites, including sites that retain eye-selective information. Rivalry greatly suppresses activity in the(More)
(PDEs) are a formidable tool for describing real life problems. Unfortunately, they can be solved explicitly only under many simplifying assumptions. In many applications, a numerical approximation procedure is required for a quantitative analysis of the problem at hand. This course will provide a practical introduction to the numerical approximation of(More)
It is debated whether different forms of bistable perception result from common or separate neural mechanisms. Binocular rivalry involves perceptual alternations between competing monocular images, whereas ambiguous figures such as the Necker cube lead to alternations between two possible pictorial interpretations. Previous studies have shown that observers(More)
To understand conscious vision, scientists must elucidate how the brain selects specific visual signals for awareness. When different monocular patterns are presented to the two eyes, they rival for conscious expression such that only one monocular image is perceived at a time. Controversy surrounds whether this binocular rivalry reflects neural competition(More)
Inversion severely impairs the recognition of greyscale faces and the ability to see the stimulus as a face in two-tone Mooney images. We used functional magnetic resonance imaging to study the effect of face inversion on the human fusiform face area (FFA). MR signal intensity from the FFA was reduced when greyscale faces were presented upside-down, but(More)
We used functional magnetic resonance imaging to study the response properties of the human fusiform face area (FFA: Kanwisher, McDermott, & Chun, 1997) to a variety of face-like stimuli in order to clarify the functional role of this region. FFA responses were found to be (1) equally strong for cat, cartoon and human faces despite very different image(More)