Learn More
5-Hydroxytryptamine (5-HT), a neurotransmitter and neuromodulator in the central nervous system of the leech Hirudo medicinalis hyperpolarizes the giant glial cell in the neuropil of segmental ganglia at micromolar concentrations. The 5-HT-evoked glial response (EC(50) approximately 2.5 microM) is mediated by a non-desensitizing, G-protein-coupled receptor(More)
The giant glial cell in the neuropil of segmental ganglia of the leech Hirudo medicinalis responds to the activity of the Leydig interneuron and to a peptide of the myomodulin family, the presumed transmitter mediating the Leydig neuron-to-giant glial cell transmission, with a membrane hyperpolarization due to an increased membrane K+ conductance [Britz et(More)
A myomodulin peptide has been suggested to mediate the response of the giant glial cells to stimulation of the Leydig interneuron in the central nervous system of the leech Hirudo medicinalis [Eur. J. Neurosci. 11 (1999) 3125]. We have now studied the glial response to the endogenous leech MM peptide (GMGALRL-NH(2), MMHir). The peptide evokes a membrane(More)
The cross-talk between neurons and glial cells is receiving increased attention because of its potential role in information processing in nervous systems. Stimulation of a single identifiable neuron, the neurosecretory Leydig interneuron in segmental ganglia of the leech Hirudo medicinalis, which modulates specific behaviors in the leech, evokes membrane(More)
Glial cells can be activated by neurotransmitters via metabotropic, G protein-coupled receptors. We have studied the effects of 'global' G protein activation by GTP-gamma-S on the membrane potential, membrane conductance, intracellular Ca(2+) and Na(+) of the giant glial cell in isolated ganglia of the leech Hirudo medicinalis. Uncaging GTP-gamma-S(More)
  • 1