Frank C Britz

Learn More
5-Hydroxytryptamine (5-HT), a neurotransmitter and neuromodulator in the central nervous system of the leech Hirudo medicinalis hyperpolarizes the giant glial cell in the neuropil of segmental ganglia at micromolar concentrations. The 5-HT-evoked glial response (EC(50) approximately 2.5 microM) is mediated by a non-desensitizing, G-protein-coupled receptor(More)
Glial cells can be activated by neurotransmitters via metabotropic, G protein-coupled receptors. We have studied the effects of 'global' G protein activation by GTP-gamma-S on the membrane potential, membrane conductance, intracellular Ca(2+) and Na(+) of the giant glial cell in isolated ganglia of the leech Hirudo medicinalis. Uncaging GTP-gamma-S(More)
The giant glial cell in the neuropil of segmental ganglia of the leech Hirudo medicinalis responds to the activity of the Leydig interneuron and to a peptide of the myomodulin family, the presumed transmitter mediating the Leydig neuron-to-giant glial cell transmission, with a membrane hyperpolarization due to an increased membrane K+ conductance [Britz et(More)
A myomodulin peptide has been suggested to mediate the response of the giant glial cells to stimulation of the Leydig interneuron in the central nervous system of the leech Hirudo medicinalis [Eur. J. Neurosci. 11 (1999) 3125]. We have now studied the glial response to the endogenous leech MM peptide (GMGALRL-NH(2), MMHir). The peptide evokes a membrane(More)
The cross-talk between neurons and glial cells is receiving increased attention because of its potential role in information processing in nervous systems. Stimulation of a single identifiable neuron, the neurosecretory Leydig interneuron in segmental ganglia of the leech Hirudo medicinalis, which modulates specific behaviors in the leech, evokes membrane(More)
  • 1