Frank A. D. T. G. Wagener

Learn More
The heme-heme oxygenase system has recently been recognized to possess important regulatory properties. It is tightly involved in both physiological as well as pathophysiological processes, such as cytoprotection, apoptosis, and inflammation. Heme functions as a double-edged sword. In moderate quantities and bound to protein, it forms an essential element(More)
When cells are injured they release their contents, resulting in a local accumulation of free heme proteins and heme. Here, we investigated the involvement of heme and its degrading enzyme heme oxygenase (HO) in the inflammatory process during wound healing. We observed that heme directly accumulates at the edges of the wound after inflicting a wound in the(More)
BACKGROUND We previously identified curcumin as a potent inducer of fibroblast apoptosis, which could be used to treat hypertrophic scar formation. Here we investigated the underlying mechanism of this process. PRINCIPAL FINDINGS Curcumin-induced apoptosis could not be blocked by caspase-inhibitors and we could not detect any caspase-3/7 activity.(More)
OBJECTIVE In type 2 diabetes mellitus (T2DM), oxidative stress gives rise to endothelial dysfunction. Bilirubin, a powerful endogenous antioxidant, significantly attenuates endothelial dysfunction in preclinical experiments. The Gilbert syndrome is accompanied by a mild and lifelong hyperbilirubinemia and associated with only one third of the usual(More)
Reactive oxygen species (ROS) can be both beneficial and deleterious. Under normal physiological conditions, ROS production is tightly regulated, and ROS participate in both pathogen defense and cellular signaling. However, insufficient ROS detoxification or ROS overproduction generates oxidative stress, resulting in cellular damage. Oxidative stress has(More)
Upon injury, prolonged inflammation and oxidative stress may cause pathological wound healing and fibrosis, leading to formation of excessive scar tissue. Fibrogenesis can occur in most organs and tissues and may ultimately lead to organ dysfunction and failure. The underlying mechanisms of pathological wound healing still remain unclear, and are considered(More)
Increased levels of reactive oxygen species (ROS) by hyperglycemia can induce apoptosis of renal cells and diabetic nephropathy. The redox balance in the renal cell seems, therefore, of the utmost importance. ROS-mediated apoptosis may be further aggravated by an inadequate cytoprotective response against ROS. When there are insufficient cytoprotective and(More)
Mesenchymal stem cell (MSC) administration is a promising adjuvant therapy to treat tissue injury. However, MSC survival after administration is often hampered by oxidative stress at the site of injury. Heme oxygenase (HO) generates the cytoprotective effector molecules biliverdin/bilirubin, carbon monoxide (CO) and iron/ferritin by breaking down heme.(More)
Heme oxygenase-1 (HO-1) contribution to iron homeostasis has been postulated, because it facilitates iron recycling by liberating iron mostly from heme catabolism. This enzyme also appears to be responsible for the resolution of inflammatory conditions. In a patient with HO-1 deficiency, inflammation and dysregulation of body iron homeostasis, including(More)