Franco Marabelli

  • Citations Per Year
Learn More
This paper describes a new multiplexed label-free biosensor. The detection technology is based on nanostructured gold-polymer surfaces. These surfaces support surface plasmon resonance modes that can be probed by a miniaturized optical setup. The optical characterization of the sensing chip shows the sensitivity and the limit-of-detection to refractive(More)
One– and two-dimensional photonic crystals are obtained by electron beam lithography and reactive ion etching on silicon-on-insulator waveguides. Variable-angle reflectance is measured and calculated in the 0.2–2-eV energy range, giving evidence of the quasi-guided modes of the photonic structure. Photonic bands in the one-dimensional case are determined(More)
Artificial opal films have been prepared by sedimentation of monodisperse silica spheres in water suspension. Atomic force microscope images show a triangular packing of the spheres at the surface of the films. The presence and the energy position of an optical pseudo gap in incidence-angle-dependent transmittance and reflectance spectra is observed and(More)
We report on a technique for measuring the refractive indices of nonabsorbing media over a broad spectral range from 0.5 to 5 microm. White-light interferometry based on a double-interferometer system consisting of a fixed Mach-Zehnder interferometer and a Fourier-transform spectrometer is used for direct measurement of the absolute rotation-dependent phase(More)
We report an investigation on the optical properties of Cu3Ge thin films displaying very high conductivity, with thickness ranging from 200 to 2000 Å, deposited on Ge substrates. Reflectance, transmittance, and ellipsometric spectroscopy measurements were performed at room temperature in the 0.01–6.0, 0.01–0.6, and 1.4–5.0 eV energy range, respectively. The(More)
Biosensing technologies based on plasmonic nanostructures have recently attracted significant attention due to their small dimensions, low-cost and high sensitivity but are often limited in terms of affinity, selectivity and stability. Consequently, several methods have been employed to functionalize plasmonic surfaces used for detection in order to(More)
Ring the changes: Experimental Raman spectra of fluorinated and non-fluorinated polyphenylenevinylenes are assigned according to quantum chemical calculations for oligomer model systems [picture: see text]. Characteristic differences in the spectra can be traced back to strong inter-ring distortion of the fluorinated compounds.The Raman spectrum of(More)
Ultrathin films of silica realized by sol-gel synthesis and dip-coating techniques were successfully applied to predefined metal/polymer plasmonic nanostructures to spectrally tune their resonance modes and to increase their sensitivity to local refractive index changes. Plasmon resonance spectral shifts up to 100 nm with slope efficiencies of ∼8 nm/nm for(More)
Recently the demand dramatically grew up for portable biosensors, providing an on-site multi-parametric measurement. Present instruments, however, are limited by large size and consumption (which prevents portability) and costs (which prevents their usage in some Countries). In this paper, we propose a compact and portable device based on a nano-structured(More)
An all-polymer photonic structure constituted by a distributed Bragg reflector topped with an ultrathin fluorescent polymer film has been studied. A Bloch surface wave resonance has been exploited to improve pumping efficiency. A strongly polarization and angle dependent fluorescence signal is found with respect to the light pumping beam and the emitted(More)