Franco Dinelli

Learn More
Hole mobility in organic ultrathin film field-effect transistors is studied as a function of the coverage. For layered sexithienyl films, the charge carrier mobility rapidly increases with increasing coverage and saturates at a coverage of about two monolayers. This shows that the first two molecular layers next to the dielectric interface dominate the(More)
The analysis of the formation of ultra-thin organic films is a very important issue. In fact, it is known that the properties of organic light emitting diodes and field effect transistors are strongly affected by the early growth stages. For instance, in the case of sexithiophene, the presence of domains made of molecules with the backbone parallel to the(More)
In organic field effect transistors, charge transport is confined to a narrow region next to the organic/dielectric interface. It is thus extremely important to determine the morphology and the molecular arrangement of the organic films at their early growth stages. On a substrate of technological interest, such as thermally grown silicon oxide, it has been(More)
Scanning ion conductance microscopy (SICM) is currently used for high resolution topographic imaging of living cells. Recently, it has been also employed as a tool to deliver stimuli to the cells. In this work we have investigated the mechanical interaction occurring between the pipette tip and the sample during SICM operation. For the purpose, we have(More)
Knowledge of mechanical properties of living cells is essential to understand their physiological and pathological conditions. To measure local cellular elasticity, scanning probe techniques have been increasingly employed. In particular, non-contact scanning ion conductance microscopy (SICM) has been used for this purpose; thanks to the application of a(More)
Understanding the elastic response on the nanoscale phase boundaries of multiferroics is an essential issue in order to explain their exotic behaviour. Mixed-phase BiFeO3 films, epitaxially grown on LaAlO3 (001) substrates, have been investigated by means of scanning probe microscopy to characterize the elastic and piezoelectric responses in the mixed-phase(More)
Nanoscale rippling induced by an atomic force microscope (AFM) tip can be observed after performing one or many scans over the same area on a range of materials, namely ionic salts, metals, and semiconductors. However, it is for the case of polymer films that this phenomenon has been widely explored and studied. Due to the possibility of varying and(More)
We report on the influence of the dielectric/organic interface properties on the electrical characteristics of field-effect transistors based on polyphenylenevinylene derivatives. Through a systematic investigation of the most common dielectric surface treatments, a direct correlation of their effect on the field-effect electrical parameters, such as charge(More)
The present paper reports on a novel lithographic approach at the nanoscale level, which is based on scanning probe microscopy (SPM) and nanoimprint lithography (NIL). The experimental set-up consists of an atomic force microscope (AFM) operated via software specifically developed for the purpose. In particular, this software allows one to apply a(More)
Scanning probe microscopy (SPM) represents a powerful tool that, in the past 30 years, has allowed for the investigation of material surfaces in unprecedented ways at the nanoscale level. However, SPM has shown very little capability for depth penetration, which several nanotechnology applications require. Subsurface imaging has been achieved only in a few(More)
  • 1