Franco Dassi

Learn More
A common representation of surfaces with complicated topology and geometry is through composite parametric surfaces as is the case for most CAD modelers. A challenging problem is how to generate a mesh of such a surface that well approximates the geometry of the surface, preserves its topology and important geometric features, and contains nicely shaped(More)
In this paper we provide a novel anisotropic mesh adaptation technique for adaptive finite element analysis. It is based on the concept of higher dimensional embedding, which was exploited in [1–4] to obtain an anisotropic curvature adapted mesh that fits a complex surface in R 3. In the context of adaptive finite element simulation, the solution (which is(More)
  • 1