Learn More
In vivo cell electroporation is the basis of DNA electrotransfer, an efficient method for non-viral gene therapy using naked DNA. The electric pulses have two roles, to permeabilize the target cell plasma membrane and to transport the DNA towards or across the permeabilized membrane by electrophoresis. For efficient electrotransfer, reversible undamaging(More)
Efficient DNA electrotransfer can be achieved with combinations of short high-voltage (HV) and long low voltage (LV) pulses that cover two effects of the pulses, namely, target cell electropermeabilization and DNA electrophoresis within the tissue. Because HV and LV can be delivered with a lag up to 3000 sec between them, we considered that it was possible(More)
Gene electrotransfer is gaining momentum as an efficient methodology for nonviral gene transfer. In skeletal muscle, data suggest that electric pulses play two roles: structurally permeabilizing the muscle fibers and electrophoretically supporting the migration of DNA toward or across the permeabilized membrane. To investigate this further, combinations of(More)
We report the first successful use of irreversible electroporation for the minimally invasive treatment of aggressive cutaneous tumors implanted in mice. Irreversible electroporation is a newly developed non-thermal tissue ablation technique in which certain short duration electrical fields are used to permanently permeabilize the cell membrane, presumably(More)
D NA vaccination consists of administering an antigen-coding nucleotide sequence. In order to improve the efficacy of DNA vaccines, electroporation is one of the most commonly used methods to enhance DNA uptake. Here, we discuss additional immunological effects of electroporation that are key aspects for inducing immunity in response to DNA vaccines. DNA(More)
Cancer stem cells (CSC) have raised great excitement during the last decade and are promising targets for an efficient treatment of tumors without relapses and metastases. Among the various methods that enable to enrich cancer cell lines in CSC, tumorspheres culture has been predominantly used. In this report, we attempted to generate tumorspheres from(More)
Human adipose mesenchymal stem cells (haMSCs) are multipotent adult stem cells of great interest in regenerative medicine or oncology. They present spontaneous calcium oscillations related to cell cycle progression or differentiation but the correlation between these events is still unclear. Indeed, it is difficult to mimic haMSCs spontaneous calcium(More)
Gene electrotransfer is a safe and efficient nonviral technique for the transfer of nucleic acids of all sizes. Using a small reporter plasmid (3.5 kbp), electrotransfer of more than 90% of the cells, with ~70% viability, can be routinely achieved even in primary cells like mesenchymal stem cells. However, under the same experimental conditions,(More)
BACKGROUND Human mesenchymal stem cells are promising tools for regenerative medicine due to their ability to differentiate into many cellular types such as osteocytes, chondrocytes and adipocytes amongst many other cell types. These cells present spontaneous calcium oscillations implicating calcium channels and pumps of the plasma membrane and the(More)
  • 1