Learn More
Dehydration of protein crystals is rarely used, despite being a post-crystallization method that is useful for the improvement of crystal diffraction properties, as it is difficult to reproduce and monitor. A novel device for hydration control of macromolecular crystals in a standard data-collection environment has been developed. The device delivers an air(More)
The use of automated systems for crystallization and X-ray data collection is now widespread. However, these two steps are separated by the need to transfer crystals from crystallization supports to X-ray data-collection supports, which is a difficult manual operation. Here, a new approach is proposed called CrystalDirect (CD) which enables full automation(More)
The increase in the number of large multi-component complexes and membrane protein crystal structures determined over the last few years can be ascribed to a number of factors such as better protein expression and purification systems, the emergence of high-throughput crystallization techniques and the advent of 3rd generation synchrotron sources. However,(More)
A standard sample holder and vial for cryocooled macromolecular crystals has been defined for use with robotic sample changers. This SPINE standard sample holder is a modified version, with added features and specifications, of sample holders in common use. In particular, the SPINE standard meets the precision required for automatic sample exchange and(More)
Small-angle X-ray scattering (SAXS) of macromolecules in solution is in increasing demand by an ever more diverse research community, both academic and industrial. To better serve user needs, and to allow automated and high-throughput operation, a sample changer (BioSAXS Sample Changer) that is able to perform unattended measurements of up to several(More)
Structural proteomics has promoted the rapid development of automated protein structure determination using X-ray crystallography. Robotics are now routinely used along the pipeline from genes to protein structures. However, a bottleneck still remains. At synchrotron beamlines, the success rate of automated sample alignment along the X-ray beam is limited(More)
The production of three-dimensional crystallographic structural information of macromolecules can now be thought of as a pipeline which is being streamlined at every stage from protein cloning, expression and purification, through crystallisation to data collection and structure solution. Synchrotron X-ray beamlines are a key section of this pipeline as it(More)
Exposure to X-rays, high-intensity visible light or ultraviolet radiation results in alterations to protein structure such as the breakage of disulfide bonds, the loss of electron density at electron-rich centres and the movement of side chains. These specific changes can be exploited in order to obtain phase information. Here, a case study using insulin to(More)
  • 1