Franck Amyot

Learn More
Noncontact optical imaging of curved objects can result in strong artifacts due to the object's shape, leading to curvature biased intensity distributions. This artifact can mask variations due to the object's optical properties, and makes reconstruction of optical/physiological properties difficult. In this work we demonstrate a curvature correction method(More)
We describe a novel reconstruction algorithm based on Principal Component Analysis (PCA) applied to multi-spectral imaging data. Using numerical phantoms, based on a two layered skin model developed previously, we found analytical expressions, which convert qualitative PCA results into quantitative blood volume and oxygenation values, assuming the epidermal(More)
The ability to assess frontal lobe function in a rapid, objective, and standardized way, without the need for expertise in cognitive test administration might be particularly helpful in mild traumatic brain injury (TBI), where objective measures are needed. Functional near infrared spectroscopy (fNIRS) is a reliable technique to noninvasively measure local(More)
In this paper we discuss results based on using instrumental motion as a signal rather than treating it as noise in Near Infra-Red (NIR) imaging. As a practical application to demonstrate this approach we show the design of a novel NIR hematoma detection device. The proposed device is based on a simplified single source configuration with a dual separation(More)
Functional Near Infrared Spectroscopy (fNIRS) can non-invasively capture dynamic cognitive activation and underlying physiological processes by measuring changes in oxy- and deoxy-hemoglobin levels, correlated to brain activation. It is a portable, inexpensive and user-friendly device which is easily adapted to the outpatient setting for the assessment of(More)
  • 1