Francisco de A. T. de Carvalho

Learn More
This paper presents adaptive and non-adaptive fuzzy c-means clustering methods for partitioning symbolic interval data. The proposed methods furnish a fuzzy partition and prototype for each cluster by optimizing an adequacy criterion based on suitable squared Euclidean distances between vectors of intervals. Moreover, various cluster interpretation tools(More)
This paper presents a partitional dynamic clustering method for interval data based on adaptive Hausdorff distances. Dynamic clustering algorithms are iterative two-step relocation algorithms involving the construction of the clusters at each iteration and the identification of a suitable representation or prototype (means, axes, probability laws, groups of(More)
This paper introduces hard clustering algorithms that are able to partition objects taking into account simultaneously their relational descriptions given by multiple dissimilarity matrices. These matrices have been generated using different sets of variables and dissimilarity functions. These methods are designed to furnish a partition and a prototype for(More)
This paper introduces a new approach to fitting a linear regression model to symbolic interval data. Each example of the learning set is described by a feature vector, for which each feature value is an interval. The new method fits a linear regression model on the mid-points and ranges of the interval values assumed by the variables in the learning set.(More)