Learn More
BACKGROUND Gene Ontology (GO) is a standard vocabulary of functional terms and allows for coherent annotation of gene products. These annotations provide a basis for new methods that compare gene products regarding their molecular function and biological role. RESULTS We present a new method for comparing sets of GO terms and for assessing the functional(More)
We investigated and optimized a method for structure comparison which is based on rigid body superimposition. The method maximizes the number of structurally equivalent residues while keeping the root mean square deviation constant. The resulting number of equivalent residues then provides an adequate similarity measure, which is easy to interpret. We(More)
BACKGROUND Structural models determined by X-ray crystallography play a central role in understanding protein-protein interactions at the molecular level. Interpretation of these models requires the distinction between non-specific crystal packing contacts and biologically relevant interactions. This has been investigated previously and classification(More)
Computational analysis and interactive visualization of biological networks and protein structures are common tasks for gaining insight into biological processes. This protocol describes three workflows based on the NetworkAnalyzer and RINalyzer plug-ins for Cytoscape, a popular software platform for networks. NetworkAnalyzer has become a standard Cytoscape(More)
Inflammatory bowel disease (IBD) typically manifests as either ulcerative colitis (UC) or Crohn's disease (CD). Systematic identification of susceptibility genes for IBD has thus far focused mainly on CD, and little is known about the genetic architecture of UC. Here we report a genome-wide association study with 440,794 SNPs genotyped in 1,167 individuals(More)
The study of individual amino acid residues and their molecular interactions in protein structures is crucial for understanding structure-function relationships. Recent work has indicated that residue networks derived from 3D protein structures provide additional insights into the structural and functional roles of interacting residues. Here, we present the(More)
Evaluation and assessment are critical issues in CASP experiments. Automated procedures are necessary to compare a large number of predictions with the target folds. The evaluation has to reveal the maximum extent of similarity between predictions and targets, it should be applicable across prediction categories, and it should be transparent and accessible(More)
Anaemia is a chief determinant of global ill health, contributing to cognitive impairment, growth retardation and impaired physical capacity. To understand further the genetic factors influencing red blood cells, we carried out a genome-wide association study of haemoglobin concentration and related parameters in up to 135,367 individuals. Here we identify(More)
Sequence alignment is a standard method to infer evolutionary, structural, and functional relationships among sequences. The quality of alignments depends on the substitution matrix used. Here we derive matrices based on superimpositions from protein pairs of similar structure, but of low or no sequence similarity. In a performance test the matrices are(More)
The biological role, biochemical function, and structure of uncharacterized protein sequences is often inferred from their similarity to known proteins. A constant goal is to increase the reliability, sensitivity, and accuracy of alignment techniques to enable the detection of increasingly distant relationships. Development, tuning, and testing of these(More)