Francisco Ogando

  • Citations Per Year
Learn More
We describe the parallel full-f gyrokinetic particle-in-cell plasma simulation code ELMFIRE and the issue of solving a electrostatic potential from particle data distributed across several MPI (Message Passing Interface) processes. The potential is solved through a linear system with a strongly sparse matrix and ELMFIRE stores data of the estimated nonzero(More)
Gyrokinetic particle-in-cell simulation on a transport and microinstability time scale is performed with the ELMFIRE code for a small tokamak FT-2 with kinetic electrons. Turbulent modes are characterized based on their poloidal phase velocity, and tentative comparison with the Doppler reflectometric measurement is done for the poloidal mode rotation.(More)
In the frame of IFMIF/EVEDA activities, a prototype accelerator delivering a high power deuteron beam is under construction in Japan. Interaction of these deuterons with matter will generate high levels of neutrons and induced activation, whose predicted yields depend strongly on the models used to calculate the different cross sections. A benchmark test(More)
Understanding turbulence in fusion plasmas has become a crucial task in order to achieve sufficient confinement level in large-scale devices like ITER. The ELMFIRE full f nonlinear gyrokinetic simulation code has been developed for calculation of plasma evolution and dynamics of turbulence in tokamak geometry. Code ELMFIRE is based on a particle-in-cell(More)
The direct implicit method with a second-order implicit integration scheme is formulated for and applied to the electron parallel nonlinearity in global electrostatic gyrokinetic particle-in-cell simulations of toroidal fusion plasmas. The method shows improved numerical accuracy and stability properties compared to the direct implicit method with a(More)
  • 1