Learn More
The attachment of cells to biomedical materials can be improved by using adhesion sequences, such as Arg-Gly-Asp (RGD), found in several extracellular matrix proteins. In this work, bifunctional recombinant proteins, with a Cellulose-Binding Module (CBM), from the cellulosome of Clostridium thermocellum and cell binding sequences-RGD, GRGDY-were cloned and(More)
Two enzymatic extracts obtained from xylan-grown Aspergillus terreus CCMI 498 and cellulose-grown Trichoderma viride CCMI 84 were characterised for different glycanase activities. Both strains produce extracellular endoxylanase and endoglucanase enzymes. The enzymes optimal activity was found in the temperature range of 45-60 degrees C. Endoglucanase(More)
The incorporation of graphene-based materials has been shown to improve mechanical properties of poly(lactic acid) (PLA). In this work, PLA films and composite PLA films incorporating two graphene-based materials - graphene oxide (GO) and graphene nanoplatelets (GNP) - were prepared and characterized regarding not only biocompatibility, but also surface(More)
The amphiphilic molecule dextrin-VA-SC16 (dexC16) was synthesized and studied in this work. DexC16 has a hydrophilic dextrin backbone with grafted acrylate groups (VA) substituted with hydrophobic 1-hexadecanethiol (C16). A versatile synthetic method was developed allowing control of the dextrin degree of substitution with the hydrophobic chains (DSC16,(More)
The susceptibility of starch-based biomaterials to enzymatic degradation by amylolytic enzymes (glucoamylase and alpha-amylase) was investigated by means of incubating the materials with a buffer solution, containing enzymes at different concentrations and combinations, at 37 degrees C for 6 weeks. Two polymeric blends of corn starch with(More)
Carbohydrate-binding modules (CBMs) are small components of several enzymes, which present an independent fold and function, and specific carbohydrate-binding activity. Their major function is to bind the enzyme to the substrate enhancing its catalytic activity, especially in the case of insoluble substrates. The immense diversity of CBMs, together with(More)
Enzymatic versus chemical deinking is examined for MOW and photocopy prints. Several enzymatic preparations and two fibre/ink particle separation methods are tested. Deinking was monitored by image analysis and standard pulp and paper characterisation procedures. The effectiveness of the fibre/ink particle separation method depends on the ink particle's(More)
Self-assembled nanogels made of hydrophobized pullulan were obtained using a versatile, simple, reproducible and low-cost method. In a first reaction pullulan was modified with hydroxyethyl methacrylate or vinyl methacrylate, further modified in the second step with hydrophobic 1-hexadecanethiol, resulting as an amphiphilic material, which self-assembles in(More)
Nanomaterials have unusual properties not found in the bulk materials, which can be exploited in numerous applications such as biosensing, electronics, scaffolds for tissue engineering, diagnostics and drug delivery. However, research in the past few years has turned up a range of potential health hazards, which has given birth to the new discipline of(More)
Bacterial cellulose (BC) is used in different fields as a biological material due to its unique properties. Despite there being many BC applications, there still remain many problems associated with bioprocess technology, such as increasing productivity and decreasing production cost. New technologies that use waste from the food industry as raw materials(More)