Francisco Martínez-Abarca

Learn More
RmInt1 is a functional group II intron found in Sinorhizobium meliloti where it interrupts a group of IS elements of the IS630-Tc1 family. In contrast to many other group II introns, the intron-encoded protein (IEP) of RmInt1 lacks the characteristic conserved part of the Zn domain associated with the IEP endonuclease activity. Nevertheless, in this study,(More)
Advances in the field of genomics and 'metagenomics' have dramatically revised our view of microbial biodiversity and its potential for biotechnological applications. Considering the estimation that >99% of microorganisms in most environments are not amenable to culturing, very little is known about their genomes, genes and encoded enzymatic activities. The(More)
Group II introns are large catalytic RNA molecules that act as mobile genetic elements. They were initially identified in the organelle genomes of lower eukaryotes and plants, and it has been suggested that they are the progenitors of nuclear spliceosomal introns. Group II self-splicing introns were shown to be present in bacteria in 1993, since when the(More)
RmInt1 is a group II intron of Sinorhizobium meliloti which was initially found within the insertion sequence ISRm2011-2. Although the RmInt1 intron-encoded protein lacks a recognizable endonuclease domain, it is able to mediate insertion of RmInt1 at an intron-specific location in intronless ISRm2011-2 recipient DNA, a phenomenon termed homing. Here we(More)
Rhizobium leguminosarum bv. viciae-secreted Nod factors are able to induce root hair deformation, the formation of nodule primordia and the expression of early nodulin genes in Vicia sativa (vetch). To obtain more insight into the mode of action of Nod factors the expression of early nodulin genes was followed during Nod factor-induced root hair deformation(More)
The soil microbial community is highly complex and contains a high density of antibiotic-producing bacteria, making it a likely source of diverse antibiotic resistance determinants. We used functional metagenomics to search for antibiotic resistance genes in libraries generated from three different soil samples, containing 3.6 Gb of DNA in total. We(More)
By sequence analysis of Sinorhizobium meliloti strain GR4 plasmid pRmeGR4b, we have identified a group II intron named RmInt1 inserted within the insertion sequence ISRm2011-2 of the IS630-Tc1/IS3 retroposon superfamily. Like some other group II introns, RmInt1 possesses, in addition to the structurally conserved ribozyme core, an open reading frame (ORF)(More)
Sinorhizobium meliloti RmInt1 is an efficient mobile group II intron that uses an unknown reverse transcriptase priming mechanism as the intron ribonucleoprotein complex can reverse splice into DNA target substrates but cannot carry out site-specific second strand cleavage due to the lack of a C-terminal DNA endonuclease domain. We show here that, like(More)
The infection of the human monocytic cell line U-937 by poliovirus was characterized by a low level of virus production and a slow progression of the cytopathic effect. Infection took place in greater than 99% of the cells as revealed by a limiting dilution assay. No viral protein synthesis was evident in the infected U-937 cells when analyzed by(More)
To examine the influence of the host cell type on poliovirus RNA synthesis we compared the levels of (-) and (+) strand poliovirus RNA during infection of epithelial (HeLa and HEp-2), leukocytic (U-937, HL-60 and K-562) and nerve (IMR-32) cells. The levels of (-) strand RNA were higher in IMR-32, U-937, K-562 or HL-60 cells than those in HeLa or HEp-2(More)