Learn More
Conventional evolutionary game theory predicts that natural selection favours the selfish and strong even though cooperative interactions thrive at all levels of organization in living systems. Recent investigations demonstrated that a limiting factor for the evolution of cooperative interactions is the way in which they are organized, cooperators becoming(More)
Real populations have been shown to be heterogeneous, in which some individuals have many more contacts than others. This fact contrasts with the traditional homogeneous setting used in studies of evolutionary game dynamics. We incorporate heterogeneity in the population by studying games on graphs, in which the variability in connectivity ranges from(More)
We investigate how diversity in individual responses to unwanted interactions affects the evolution of cooperation modeled as a 2-person prisoner's dilemma. We combine adaptive networks and evolutionary game theory, showing analytically how the coevolution of social dynamics, network dynamics, and behavioral differences benefit the entire community even(More)
Humans often cooperate in public goods games and situations ranging from family issues to global warming. However, evolutionary game theory predicts that the temptation to forgo the public good mostly wins over collective cooperative action, and this is often also seen in economic experiments. Here we show how social diversity provides an escape from this(More)
We introduce a class of small-world networks--homogeneous small-worlds--which, in contrast with the well-known Watts-Strogatz small-worlds, exhibit a homogeneous connectivity distribution, in the sense that all nodes have the same number of connections. This feature allows the investigation of pure small-world effects, detached from any associated(More)
We study the evolution of cooperation under indirect reciprocity, believed to constitute the biological basis of morality. We employ an evolutionary game theoretical model of multilevel selection, and show that natural selection and mutation lead to the emergence of a robust and simple social norm, which we call stern-judging. Under stern-judging, helping a(More)
Understanding the evolutionary mechanisms that promote and maintain cooperative behavior is recognized as a major theoretical problem where the intricacy increases with the complexity of the participating individuals. This is epitomized by the diverse nature of Human interactions, contexts, preferences and social structures. Here we discuss how social(More)
The evolution of cooperation described in terms of simple two-person interactions has received considerable attention in recent years, where several key results were obtained. Among those, it is now well established that the web of social interaction networks promotes the emergence of cooperation when modeled in terms of symmetric two-person games. Up until(More)
BACKGROUND There is variability in the cancer phenotype across individuals: two patients with the same tumour may experience different disease life histories, resulting from genetic variation within the tumour and from the interaction between tumour and host. Until now, phenotypic variability has precluded a clear-cut identification of the fundamental(More)
Human societies are organized in complex webs that are constantly reshaped by a social dynamic which is influenced by the information individuals have about others. Similarly, epidemic spreading may be affected by local information that makes individuals aware of the health status of their social contacts, allowing them to avoid contact with those infected(More)