Francisco Bozinovic

Learn More
Metabolic rate is a key aspect of organismal biology and the identification of selective factors that have led to species differences is a major goal of evolutionary physiology. We tested whether environmental characteristics and/or diet were significant predictors of interspecific variation in rodent metabolic rates. Mass-specific basal metabolic rates(More)
Through functional analyses, integrative physiology is able to link molecular biology with ecology as well as evolutionary biology and is thereby expected to provide access to the evolution of molecular, cellular, and organismic functions; the genetic basis of adaptability; and the shaping of ecological patterns. This paper compiles several exemplary(More)
The adaptive modulation hypothesis posits that the expression of digestive proteins should be modulated in response to intake of their respective substrates. A corollary of this hypothesis suggests that dietary flexibility and digestive plasticity should be correlated. We examined these two hypotheses in two granivorous Chilean birds (Zonotrichia capensis(More)
We analyzed and compared the scaling of both basal and maximal thermogenic metabolic rates in passerine and nonpasserine birds using conventional and phylogenetic methods. In spite of the presumed adaptive importance of both metabolic traits, few studies concerning both their relationships and their ecological and evolutionary constraints have been(More)
It is generally accepted that human Alzheimer's disease (AD) neuropathology markers are completely absent in rodent brains. We report here that an aged wild-type South American rodent, Octodon degu, expresses neuronal beta-amyloid precursor protein (beta-APP695) displaying both intracellular and extracellular deposits of amyloid-beta-peptide (Abeta),(More)
Climate change is altering phenology and distributions of many species and further changes are projected. Can species physiologically adapt to climate warming? We analyse thermal tolerances of a large number of terrestrial ectotherm (n = 697), endotherm (n = 227) and plant (n = 1816) species worldwide, and show that tolerance to heat is largely conserved(More)
Huddling in small mammals appears as an efficient response to low ambient temperatures with important consequences in thermoregulatory energy savings. These energy savings have been ascribed to a decrease in the exposed area in relation to the animal's volume. It has been proposed that during huddling reductions in the exposed area and in the metabolic rate(More)
PURPOSE To determine the eye's spectral sensitivity in three species of the genus Octodon (order Rodentia; infraorder Caviomorpha), O. degus, O. bridgesi, and O. lunatus, as well as the spectral properties of the animals' fur and urine and of objects in their habitat. The genus is endemic in Chile and contains species with different habitats and circadian(More)
We studied the potential for response to selection in typical physiological-thermoregulatory traits of mammals such as maximum metabolic rate (MMR), nonshivering thermogenesis (NST) and basal metabolic rate (BMR) on cold-acclimated animals. We used an animal model approach to estimate both narrow-sense heritabilities (h2) and genetic correlations between(More)
Studies focusing on physiological variation among individuals, and its possible evolutionary consequences, are scarce. A trait can only be a target of natural selection if it is consistent over time, that is, a trait must be repeatable. In ectotherms it has been suggested that standard metabolic rate (MR) is related to Darwinian fitness, since it reflects(More)