Francisco Bautista-Cruz

Learn More
Exacerbated sensitivity to mechanical stimuli that are normally innocuous or mildly painful (mechanical allodynia and hyperalgesia) occurs during inflammation and underlies painful diseases. Proteases that are generated during inflammation and disease cleave protease-activated receptor 2 (PAR2) on afferent nerves to cause mechanical hyperalgesia in the skin(More)
To investigate the possible contribution of peripheral sensory mechanisms to abdominal pain following infectious colitis, we examined whether the Citrobacter rodentium mouse model of human E. coli infection caused hyperexcitability of nociceptive colonic dorsal root ganglion (DRG) neurons and whether these changes persisted following recovery from(More)
The antinociceptive mechanism underlying protease-activated receptor-4 (PAR(4)) activation was studied in Fast Blue-labelled dorsal root ganglia (DRG) neurons from mouse colon which expressed transcript for PAR(4). Whole cell perforated patch clamp recordings were obtained from these neurons and the effects on neuronal excitability of PAR(4) activating(More)
  • 1