Francisco Barona-Gómez

Learn More
Desferrioxamines are a structurally related family of tris-hydroxamate siderophores that form strong hexadentate complexes with ferric iron. Desferrioxamine B has been used clinically for the treatment of iron overload in man. We have unambiguously identified desferrioxamine E as the major desferrioxamine siderophore produced by Streptomyces coelicolor M145(More)
Polyketide synthases (PKSs) are involved in the biosynthesis of many important natural products. In bacteria, type III PKSs typically catalyze iterative decarboxylation and condensation reactions of malonyl-CoA building blocks in the biosynthesis of polyhydroxyaromatic products. Here it is shown that Gcs, a type III PKS encoded by the sco7221 ORF of the(More)
Siderophore-mediated iron acquisition has been well studied in many bacterial pathogens because it contributes to virulence. In contrast, siderophore-mediated iron acquisition by saprophytic bacteria has received relatively little attention. The independent identification of the des and cch gene clusters that direct production of the tris-hydroxamate ferric(More)
Oligomerization and macrocyclization reactions are key steps in the biosynthesis of many bioactive natural products. Important macrocycles include the antibiotic daptomycin (1; ref. 1), the immunosuppressant FK-506 (2; ref. 2), the anthelmintic avermectin B1a (3; ref. 3) and the insecticide spinosyn A (4; ref. 4); important oligomeric macrocycles include(More)
The complete genome sequence of the original isolate of the model actinomycete Streptomyces lividans 66, also referred to as 1326, was deciphered after a combination of next-generation sequencing platforms and a hybrid assembly pipeline. Comparative analysis of the genomes of S. lividans 66 and closely related strains, including S. coelicolor M145 and S.(More)
It has recently been proposed that in addition to Nomenclature, Classification and Identification, Comprehending Microbial Diversity may be considered as the fourth tenet of microbial systematics [Staley JT (2010) The Bulletin of BISMiS, 1(1): 1–5]. As this fourth goal implies a fundamental understanding of microbial speciation, this perspective article(More)
Oxidative cyclizations, exemplified by the biosynthetic assembly of the penicillin nucleus from a tripeptide precursor, are arguably the most synthetically powerful implementation of C-H activation reactions in nature. Here, we show that Rieske oxygenase-like enzymes mediate regio- and stereodivergent oxidative cyclizations to form 10- and 12-membered(More)
We report the occurrence of an isomerase with a putative (betaalpha)(8)-barrel structure involved in both histidine and trypto-phan biosynthesis in Streptomyces coelicolor A3(2) and Mycobacterium tuberculosis HR37Rv. Deletion of a hisA homologue (SCO2050) putatively encoding N'-[(5'-phosphoribosyl)-formimino]-5 amino-imidazole-4-carboxamide ribonucleotide(More)
Despite the prominent role of horizontal gene transfer (HGT) in shaping bacterial metabolism, little is known about the impact of HGT on the evolution of enzyme function. Specifically, what is the influence of a recently acquired gene on the function of an existing gene? For example, certain members of the genus Corynebacterium have horizontally acquired a(More)
Two structures of phosphoribosyl isomerase A (PriA) from Streptomyces coelicolor, involved in both histidine and tryptophan biosynthesis, were solved at 1.8A resolution. A closed conformer was obtained, which represents the first complete structure of PriA, revealing hitherto unnoticed molecular interactions and the occurrence of conformational changes.(More)