Francisco B. Rodríguez

Learn More
Eye movements can be consciously controlled by humans to the extent of performing sequences of predefined movement patterns, or 'gaze gestures'. Gaze gestures can be tracked noninvasively employing a video-based eye tracking system. Gaze gestures hold the potential to become an emerging input paradigm in the context of human-computer interaction (HCI) as(More)
In this paper we apply different techniques of information distortion on a set of classical books written in English. We study the impact that these distortions have upon the Kolmogorov complexity and the clustering by compression technique (the latter based on Normalized Compression Distance, NCD). We show how to decrease the complexity of the considered(More)
Image superresolution methods process an input image sequence of a scene to obtain a still image with increased resolution. Classical approaches to this problem involve complex iterative minimization procedures, typically with high computational costs. In this paper is proposed a novel algorithm for super-resolution that enables a substantial decrease in(More)
The retrieval abilities of spatially uniform attractor networks can be measured by the global overlap between patterns and neural states. However, we found that nonuniform networks, for instance, small-world networks, can retrieve fragments of patterns (blocks) without performing global retrieval. We propose a way to measure the local retrieval using a(More)
The idea of closed-loop interaction in in vitro and in vivo electrophysiology has been successfully implemented in the dynamic clamp concept strongly impacting the research of membrane and synaptic properties of neurons. In this paper we show that this concept can be easily generalized to build other kinds of closed-loop protocols beyond (or in addition to)(More)
We designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain-computer interfaces (BCI) based on steady state visually evoked potentials (SSVEP). In traditional paradigms, the control over the BCI-performance completely depends on the subjects' ability to learn from the given feedback cues. By contrast, in the proposed(More)
This work experimentally analyzes the learning and retrieval capabilities of the diluted metric attractor neural network when applied to collections of fingerprint images. The computational cost of the network decreases with the dilution, so we can increase the region of interest to cover almost the complete fingerprint. The network retrieval was(More)