Francisca López-Granados

Learn More
A classification problem is a decision-making task that many researchers have studied. A number of techniques have been proposed to perform binary classification. Neural networks are one of the artificial intelligence techniques that has had the most successful results when applied to this problem. Our proposal is the use of q-Gaussian Radial Basis Function(More)
A new aerial platform has risen recently for image acquisition, the Unmanned Aerial Vehicle (UAV). This article describes the technical specifications and configuration of a UAV used to capture remote images for early season site- specific weed management (ESSWM). Image spatial and spectral properties required for weed seedling discrimination were also(More)
The use of remote imagery captured by unmanned aerial vehicles (UAV) has tremendous potential for designing detailed site-specific weed control treatments in early post-emergence, which have not possible previously with conventional airborne or satellite images. A robust and entirely automatic object-based image analysis (OBIA) procedure was developed on a(More)
This article explores the potential use of multi-spectral high-spatial resolution QuickBird imagery to detect cruciferous weed patches in winter wheat fields. In the present study, research was conducted on six individual naturally infested fields (field-scale study: field area ranging between 3 and 52 ha) and on a QuickBird-segmented winter wheat image(More)
Cruciferous weeds are competitive broad-leaved species that cause losses in winter crops. In the present study, research on remote sensing was conducted on seven naturally infested fields located in Córdoba and Seville, southern Spain. Multi-spectral aerial images (four bands, including blue (B), green (G), red (R) and near-infrared bands) taken in April(More)
The strategic management of agricultural lands involves crop field monitoring each year. Crop discrimination via remote sensing is a complex task, especially if different crops have a similar spectral response and cropping pattern. In such cases, crop identification could be improved by combining object-based image analysis and advanced machine learning(More)
Olive (Olea europaea L.) is the main perennial Spanish crop. Soil management in olive orchards is mainly based on intensive and tillage operations, which have a great relevancy in terms of negative environmental impacts. Due to this reason, the European Union (EU) only subsidizes cropping systems which require the implementation of conservation(More)
In order to optimize the application of herbicides in weed-crop systems, accurate and timely weed maps of the crop-field are required. In this context, this investigation quantified the efficacy and limitations of remote images collected with an unmanned aerial vehicle (UAV) for early detection of weed seedlings. The ability to discriminate weeds was(More)
Unmanned aerial vehicles (UAVs) combined with different spectral range sensors are an emerging technology for providing early weed maps for optimizing herbicide applications. Considering that weeds, at very early phenological stages, are similar spectrally and in appearance, three major components are relevant: spatial resolution, type of sensor and(More)