Francis W. Zwiers

Learn More
Contributing Authors: M. Allen (UK), C. Ammann (USA), N. Andronova (USA), R.A. Betts (UK), A. Clement (USA), W.D. Collins (USA), S. Crooks (UK), T.L. Delworth (USA), C. Forest (USA), P. Forster (UK), H. Goosse (Belgium), J.M. Gregory (UK), D. Harvey (Canada), G.S. Jones (UK), F. Joos (Switzerland), J. Kenyon (USA), J. Kettleborough (UK), V. Kharin (Canada),(More)
Temperature and precipitation extremes and their potential future changes are evaluated in an ensemble of global coupled climate models participating in the Intergovernmental Panel on Climate Change (IPCC) diagnostic exercise for the Fourth Assessment Report (AR4). Climate extremes are expressed in terms of 20-yr return values of annual extremes of(More)
[1] The area burned by forest fires in Canada has increased over the past four decades, at the same time as summer season temperatures have warmed. Here we use output from a coupled climate model to demonstrate that human emissions of greenhouse gases and sulfate aerosol have made a detectable contribution to this warming. We further show that human-induced(More)
Extremes of weather and climate can have devastating effects on human society and the environment. Understanding past changes in the characteristics of such events, including recent increases in the intensity of heavy precipitation events over a large part of the Northern Hemisphere land area, is critical for reliable projections of future changes. Given(More)
Indices for climate variability and extremes have been used for a long time, often by assessing days with temperature or precipitation observations above or below specific physically-based thresholds. While these indices provided insight into local conditions, few physically based thresholds have relevance in all parts of the world. Therefore, indices of(More)
Human influence on climate has been detected in surface air temperature, sea level pressure, free atmospheric temperature, tropopause height and ocean heat content. Human-induced changes have not, however, previously been detected in precipitation at the global scale, partly because changes in precipitation in different regions cancel each other out and(More)
Projections of statistical aspects of weather and climate extremes can be derived from climate models representing possible future climate states. Some of the recent models have reproduced results previously reported in the Intergovernmental Panel on Climate Change (IPCC) Second Assessment Report, such as a greater frequency of extreme warm days and lower(More)
Global mean surface temperature over the past 20 years (1993–2012) rose at a rate of 0.14 ± 0.06 °C per decade (95% confidence interval)1. This rate of warming is significantly slower than that simulated by the climate models participating in Phase 5 of the Coupled Model Intercomparison Project (CMIP5). To illustrate this, we considered trends in global(More)