Francis Vocanson

Learn More
Functionalized gold nanoparticles were applied as contrast agents for both in vivo X-ray and magnetic resonance imaging. These particles were obtained by encapsulating gold cores within a multilayered organic shell which is composed of gadolinium chelates bound to each other through disulfide bonds. The contrast enhancement in MRI stems from the presence of(More)
The authors demonstrate a unique low cost process to print 2D, submicron size, and high refractive index nanopillars using a direct colloidal-photolithography process. A well collimated i-line source emitting at 365 nm wavelength illuminates a mono layer of silica microspheres of 1 μm diameter deposited on a photosensitive TiO2-based sol-gel layer. No(More)
Oxidised porous silicon samples prepared from highly and weakly doped p-type silicon substrates, have been functionalised with calix[4]arene (CA) molecules. They have been used for sodium detection as electrolyte/insulator/silicon (EIS) structures. An over Nernstian behaviour was observed and correlated with physical parameters of porous silicon samples(More)
A layer of macrocyclic calix[4]arene derivatives has been grafted on the internal surface of the mesochannels of the ordered mesoporous SBA-15 to develop highly efficient trap for heavy transition metal (HTM) ions. To ensure the successful anchoring of calix[4]arene derivatives on the surface of SBA-15, two different types of calix[4]arene derivatives, one(More)
The aim of this study was to show the feasibility and the performances of nanoparticle biosensing. A glucose conductometric biosensor was developed using two types of nanoparticles (gold and magnetic), glucose oxidase (GOD) being adsorbed on PAH (poly(allylamine hydrochloride)) modified nanoparticles, deposited on a planar interdigitated electrode (IDEs).(More)
Under reversed-phase high-performance liquid chromatographic conditions [Spherisorb ODS 1 stationary phase, UV detection at 254 nm, and acetonitrile-dichloromethane-acetic acid-methyl-tert-butylether (84.6/4.5/0.9/10, v/v/v/v) as the mobile phase], adding p-tert-butylcalix[8] (10(-5)-3.10(-5))-[12]arenes (10(-5)-4.10(-5) mol/L) to the mobile phase leads to(More)
A simple and highly sensitive approach for the detection of the anti-neoplastic drug gemcitabine is presented, based on a one-step electropolymerized molecularly imprinted microporous-metal-organic-framework. The sensitive layer was prepared by electropolymerization of the aniline moieties of p-aminothiophenol- gold nanoparticles on the surface of gold(More)
Silver nanoparticles were created inside mesoporous titania thin films by different reduction processes. We investigated the influence of the reduction method on the colour and photochromism of these amorphous TiO(2) films. The results highlight brown films by optical reduction, gray films by thermal reduction, and red, purple or orange films by chemical(More)
One of the main challenges in plasmonics is to conceive large-scale, low-cost techniques suitable for the fabrication of metal nanoparticle patterns showing precise spatial organization. Here, we introduce a simple method based on continuous-wave laser illumination to induce the self-organization of silver nanoparticles within high-index thin films. We show(More)
A sensitive electrochemical molecularly-imprinted sensor was developed for the detection of aflatoxin B1 (AFB1), by electropolymerization of p-aminothiophenol-functionalized gold nanoparticles in the presence of AFB1 as a template molecule. The extraction of the template leads to the formation of cavities that are able to specifically recognize and bind(More)