Francis M. Rotella

Richard J Bodnar6
Kerstin Olsson3
Vishal Vig3
Trisha Dindyal2
Maruf Hossain2
6Richard J Bodnar
3Kerstin Olsson
3Vishal Vig
2Trisha Dindyal
2Maruf Hossain
Learn More
The attraction to sugar-rich foods is influenced by conditioned flavor preferences (CFP) produced by the sweet taste of sugar (flavor-flavor learning) and the sugar's post-oral actions (flavor-nutrient) learning. Brain dopamine (DA) circuits are involved in both types of flavor learning, but to different degrees. This study investigated the role of DA(More)
Rats display both fructose-conditioned flavor preference (CFP) and quinine conditioned flavor avoidance (CFA). Dopamine (D1 and D2), muscarinic and nicotinic, but not NMDA or opioid receptor antagonists reduced fructose-CFP expression. Dopamine D1, dopamine D2, muscarinic or NMDA, but not opioid or nicotinic receptor antagonists reduced fructose-CFP(More)
Rats display both conditioned flavor preference (CFP) for fructose, and conditioned flavor avoidance (CFA) following sweet adulteration with quinine. Previous pharmacological analyses revealed that fructose-CFP expression was significantly reduced by dopamine (DA) D1 or D2 antagonists, but not NMDA or opioid antagonists. Fructose-CFP acquisition was(More)
Systemic dopamine (DA) D1 (SCH23390: SCH) and D2 (raclopride: RAC) antagonists blocked fructose-conditioned flavor preference (CFP) acquisition and expression. Fructose-CFP acquisition was eliminated by medial prefrontal cortex (mPFC) SCH and mPFC or amygdala (AMY) RAC. Fructose-CFP expression was reduced following SCH or RAC in AMY or nucleus accumbens(More)
A conditioned flavor preference (CFP) can be produced by pairing a flavor (conditioned stimulus, CS+) with the sweet taste of fructose. Systemic dopamine (DA) D1, D2 and NMDA, but not opioid, receptor antagonists significantly reduce the acquisition of the fructose-CFP. A conditioned flavor avoidance (CFA) can be produced by pairing a CS+flavor with the(More)
  • 1