Francis J. Miller

Learn More
The endothelium is a source of reactive oxygen species in short-term models of hypercholesterolemia and atherosclerosis. We examined a chronic model of atherosclerosis for increased vascular production of superoxide (O2-.) and determined whether endothelial overexpression of superoxide dismutase (SOD) would improve endothelium-dependent relaxation.(More)
Chronic inflammatory diseases are associated with accelerated atherosclerosis and increased risk of cardiovascular diseases (CVD). As the pathogenesis of atherosclerosis is increasingly recognized as an inflammatory process, similarities between atherosclerosis and systemic inflammatory diseases such as rheumatoid arthritis, inflammatory bowel diseases,(More)
BACKGROUND The broad applicability of RNA aptamers as cell-specific delivery tools for therapeutic reagents depends on the ability to identify aptamer sequences that selectively access the cytoplasm of distinct cell types. Towards this end, we have developed a novel approach that combines a cell-based selection method (cell-internalization SELEX) with(More)
BACKGROUND Diabetes mellitus is associated with impairment of NO-mediated vascular relaxation. The purpose of this study was to determine whether adenovirus-mediated gene transfer of endothelial NO synthase (eNOS) or Cu/Zn superoxide dismutase (SOD1) improves responsiveness to acetylcholine in alloxan-induced diabetic rabbits. METHODS AND RESULTS After 8(More)
BACKGROUND Abdominal aortic aneurysms (AAAs) in humans are associated with locally increased oxidative stress and activity of NADPH oxidase. We investigated the hypothesis that vitamin E, an antioxidant with documented efficacy in mice, can attenuate AAA formation during angiotensin II (Ang II) infusion in apolipoprotein E-deficient mice. METHODS AND(More)
Internalization of activated receptors to a compartment enriched with NAPDH oxidase and associated signaling molecules is expected to facilitate regulation of redox-mediated signal transduction. The aim of this study was to test the hypothesis that endocytosis is necessary for generation of reactive oxygen species (ROS) by Nox1 and for redox-dependent(More)
Accumulating data support the hypothesis that reactive oxygen species (ROS) play a critical role in the vascular complications observed in diabetes. However, the mechanisms of ROS-mediated vascular complications in diabetes are not clear. We tested the hypothesis that ROS-mediated increase in proapoptotic factor Bax expression leads to medial smooth muscle(More)
Low-level endotoxemia has been identified as a powerful risk factor for atherosclerosis. However, little is known about the mechanisms that regulate endotoxin responsiveness in vascular cells. We conducted experiments to compare the relative responses of human coronary artery endothelial cells (HCAEC) and smooth muscle cells (HCASMC) to very low levels of(More)
Redox-dependent migration and proliferation of vascular smooth muscle cells (SMCs) are central events in the development of vascular proliferative diseases; however, the underlying intracellular signaling mechanisms are not fully understood. We tested the hypothesis that activation of Nox1 NADPH oxidase modulates intracellular calcium ([Ca(2+)](i)) levels.(More)
The epidermal growth factor receptor (EGFR) family and its ligands serve as a switchboard for the regulation of multiple cellular processes. While it is clear that EGFR activity is essential for normal cardiac development, its function in the vasculature and its role in cardiovascular disease are only beginning to be elucidated. In the blood vessel,(More)