Francis J. M. Schmitt

Learn More
We address content-based retrieval of complete 3D object models by a probabilistic generative description of local shape properties. The proposed shape description framework characterizes a 3D object with sampled multivariate probability density functions of its local surface features. This density-based descriptor can be efficiently computed via kernel(More)
In this article we describe the experimental setup of a multispectral image acquisition system consisting of a professional monochrome CCD camera and a tunable filter in which the spectral transmittance can be controlled electronically. We have performed a spectral characterisation of the acquisition system taking into account the acquisition noise. To(More)
In this paper we introduce an efficient view-dependent refinement technique well suited to adaptive visualization of 3D triangle meshes on a graphic terminal. Our main goal is the design of fast and robust, smooth surface reconstruction from coarse meshes. We demonstrate that the sqrt{3}-subdivision operator recently introduced by Kobbelt offers many(More)
This work proposes to compare the spatial organization of colors between images through a global optimization procedure relying on the Earth Mover’s Distance. The resulting distance is applied to image retrieval. Unlike most region-based retrieval systems, no segmentation of images is needed for the query. We then address the decision stage of the(More)
We address the 3D object retrieval problem using multivariate density-based shape descriptors. Considering the fusion of first and second order local surface information, we construct multivariate features up to five dimensions and process them by the kernel density estimation methodology to obtain descriptor vectors. We can compute these descriptors very(More)
We propose a method for the colorimetric characterization of a printer which can also be applied to any other type of digital image reproduction device. The method is based on a computational geometry approach. It uses a 3D triangulation technique to build a tetrahedral partition of the printer color gamut volume and it generates a surrounding structure(More)