Learn More
Drugs activating group III metabotropic glutamate receptors (mGluRs) represent therapeutic alternatives to L-DOPA (L-3,4-dihydroxyphenylalanine) for the treatment of Parkinson's disease (PD). Their presynaptic location at GABAergic and glutamatergic synapses within basal ganglia nuclei provide a critical target to reduce abnormal activities associated with(More)
Developing nondopaminergic palliative treatments for Parkinson's disease represents a major challenge to avoid the debilitating side effects produced by L-DOPA therapy. Increasing interest is addressed to the selective targeting of group III metabotropic glutamate (mGlu) receptors that inhibit transmitter release at presumably overactive synapses in the(More)
Although agonists bind directly in the heptahelical domain (HD) of most class-I rhodopsin-like G protein coupled receptors (GPCRs), class-III agonists bind in the extracellular domain of their receptors. Indeed, the latter possess a large extracellular domain composed of a cysteine-rich domain and a Venus flytrap module. Both the low sequence homology and(More)
The metabotropic glutamate receptors are GTP-binding-protein (G-protein) coupled receptors that play important roles in regulating the activity of many synapses in the central nervous system. As such, these receptors are involved in a wide number of physiological and pathological processes. Within the last few years, new potent and selective agonists and(More)
(R)-PCEP (3-amino-3-carboxypropyl-2'-carboxyethyl phosphinic acid, 1), a new metabotropic glutamate receptor 4 (mGlu4R) agonist, was discovered in a previously reported virtual screening. The (S)-enantiomer and a series of derivatives were synthesized and tested on recombinant mGlu4 receptors. A large number of derivatives activated this receptor but was(More)
N-Methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors endowed with unique pharmacological and functional properties. In particular, their high permeability to calcium ions confers on NMDARs a central role in triggering long term changes in synaptic strength. Under excitotoxic pathological conditions, such as those occurring during brain(More)
Alterations of striatal synaptic transmission have been associated with several motor disorders involving the basal ganglia, such as Parkinson's disease. For this reason, we investigated the role of group-III metabotropic glutamate (mGlu) receptors in regulating synaptic transmission in the striatum by electrophysiological recordings and by using our novel(More)
A recent publication from Ogawa et al. suggested a possible allosteric chloride binding site in the extracellular domain of metabotropic glutamate receptors (mGluRs) by comparison with a similar site found in atrial natriuretic peptide receptor. We simultaneously reported about (S)-PCEP an agonist of subtype 4 mGluR that would bind to a similar pocket,(More)
The metabotropic glutamate receptors are G-protein coupled receptors (GPCR) involved in the regulation of many synapses, including most glutamatergic fast excitatory synapses. Eight subtypes have been identified that can be classified into three groups. The molecular characterization of these receptors revealed proteins much more complex than any other(More)
Glutamate plays a key role in modulation of nociceptive processing. This excitatory amino acid exerts its action through two distinct types of receptors, ionotropic and metabotropic glutamate receptors (mGluRs). Eight mGluRs have been identified and divided in three groups based on their sequence similarity, pharmacology and G-protein coupling. While the(More)