Learn More
BACKGROUND IVF is limited by low success rates and a confounding high multiple birth rate contributing to prematurity, increased neonatal mortality and child handicap. These problems could be overcome if single embryos of known developmental competence could be selected for transfer on day 2/3 of development, but current methods, which rely on morphological(More)
BACKGROUND IVF is limited by low success rates and an unacceptably high multiple pregnancy rate. These outcomes would be improved significantly if a single embryo of high viability could be replaced in each treatment cycle, but widespread acceptance of such a policy is hindered by the lack of predictive factors for embryo selection. We have conducted a(More)
Oxygen consumption of preimplantation and early postimplantation mouse embryos has been measured using a novel noninvasive ultramicrofluorescence technique, based on an oil-soluble, nontoxic quaternary benzoid compound pyrene, whose fluorescence is quenched in the presence of oxygen. Pyruvate and glucose consumption, lactate production, and glycogen(More)
This study investigated the relationship between human preimplantation embryo metabolism and aneuploidy rates during development in vitro. One hundred and eighty-eight fresh and cryopreserved embryos from 59 patients (33.9 +/- 0.6 years) were cultured for 2-5 days. The turnover of 18 amino acids was measured in spent media by high-performance liquid(More)
Human embryonic stem (hES) cells are routinely cultured under atmospheric, 20% oxygen tensions but are derived from embryos which reside in a 3-5% oxygen (hypoxic) environment. Maintenance of oxygen homeostasis is critical to ensure sufficient levels for oxygen-dependent processes. This study investigates the importance of specific hypoxia inducible factors(More)
Mammalian pre-implantation development culminates in the formation of the blastocyst consisting of two distinct cell lineages, approximately a third of the cells comprise the pluripotent inner cell mass (ICM) and the remainder the differentiated trophectoderm (TE). However, the contribution made by these two cell types to the overall energy metabolism of(More)
Gap junctional intercellular coupling allows cells to share low molecular weight metabolites and second messengers, thus facilitating homeostatic and developmental processes. Gap junctions make their appearance very early in rodent development, during compaction in the eight-cell stage. Surprisingly, preimplantation mouse embryos lacking the gap junction(More)
The consumption of oxygen, uptake of pyruvate and glucose and production of lactate were determined for groups of bovine embryos produced in vitro from the one-cell to the blastocyst stage (day 0-6 of culture). Measurements were made in Hepes-buffered synthetic oviduct fluid medium supplemented with 1.0 mmol pyruvate l-1, 10 mmol D,L-lactate l-1 and 1.5(More)
BACKGROUND Cryopreservation of supernumerary embryos is routinely performed in human-assisted reproduction, providing a source of embryos which can be thawed for use in subsequent treatment cycles. However, the viability of cryopreserved embryos has traditionally relied on morphological assessment, which is a poor predictor of embryo health since freezing(More)
The connexins are a family of proteins that form the intercellular membrane channels of gap junctions. Genes encoding 13 different rodent connexins have been cloned and characterized to date. Connexins vary both in their distribution among adult cell types and in the properties of the channels that they form. In order to explore the functional significance(More)