Francesco de Pasquale

Learn More
Functional MRI (fMRI) studies have shown that low-frequency (<0.1 Hz) spontaneous fluctuations of the blood oxygenation level dependent (BOLD) signal during restful wakefulness are coherent within distributed large-scale cortical and subcortical networks (resting state networks, RSNs). The neuronal mechanisms underlying RSNs remain poorly understood. Here,(More)
RATIONALE Adolescent rodents differ markedly from adults in several neuro-behavioural parameters. Moreover, 'paradoxical' responses to psychostimulants have been reported at this age. OBJECTIVES Thus, we investigated the responses of adolescent (post-natal day, PND, 34 to 43) and adult (PND >60) Sprague-Dawley male rats to the psychostimulant drug(More)
Spontaneous brain activity is spatially and temporally organized in the absence of any stimulation or task in networks of cortical and subcortical regions that appear largely segregated when imaged at slow temporal resolution with functional magnetic resonance imaging (fMRI). When imaged at high temporal resolution with magneto-encephalography (MEG), these(More)
The aim of this study was to determine cerebrospinal fluid (CSF) and serum neuron-specific enolase (NSE) concentrations in a normal population and to analyse their relationship with sex and age. The sample was recruited among patients undergoing spinal anaesthesia, without neurological diseases. NSE was determined by means of immunometric assay. One hundred(More)
OBJECTIVE We hypothesize that the major consciousness deficit observed in coma is due to the breakdown of long-range neuronal communication supported by precuneus and posterior cingulate cortex (PCC), and that prognosis depends on a specific connectivity pattern in these networks. METHODS We compared 27 prospectively recruited comatose patients who had(More)
To progress toward understanding of the mechanisms underlying the functional organization of the human brain, either a bottom-up or a top-down approach may be adopted. The former starts from the study of the detailed functioning of a small number of neuronal assemblies, while the latter tries to decode brain functioning by considering the brain as a whole.(More)
The authors present a novel method for processing T(1)-weighted images acquired with Inversion-Recovery (IR) sequence. The method, developed within the Bayesian framework, takes into account a priori knowledge about the spatial regularity of the parameters to be estimated. Inference is drawn by means of Markov Chains Monte Carlo algorithms. The method has(More)
To study the functional connectivity in patients with severe acquired brain injury is very challenging for their high level of disability because of a prolonged period of coma, extended lesions, and several cognitive and behavioral disorders. In this article, we investigated in these patients the default mode network and somatomotor connectivity changes at(More)
The aim of this preliminary study was to present a new approach for connectivity analysis in patients with severe acquired brain injury (ABI) that overcomes some of the difficulties created by anatomical abnormalities due to the brain injury. Using a data-driven approach, resting-state structural MRI (sMRI) and functional MRI (fMRI) data from three severe(More)
BACKGROUND The cognitive function of brain tumor patients is affected during the treatment. There is evidence that gliomas and surgery alter the functional brain connectivity but studies on the longitudinal effects are lacking. METHODS We acquired longitudinal (pre- and post-radiotherapy) resting-state functional magnetic resonance imaging on three(More)