Learn More
While the influence of caffeine on the regulation of brain perfusion has been the subject of multiple publications, the mechanisms involved in that regulation remain unclear. To some extent, that uncertainty is a function of a complex interplay of processes arising from multiple targets of caffeine located on a variety of different cells, many of which have(More)
Seizures in focal epilepsies are sustained by a highly synchronous neuronal discharge that arises at restricted brain sites and subsequently spreads to large portions of the brain. Despite intense experimental research in this field, the earlier cellular events that initiate and sustain a focal seizure are still not well defined. Their identification is(More)
The oscillatory pattern of pial arterioles, i.e. vasomotion, has been described since early 1980s, but the impact of neural activation on such oscillations has never been formally examined. Sciatic nerve stimulation, a well characterized model for studying neurovascular coupling (NVC), leads to a neural activity-related increase of pial arteriolar diameter(More)
Astrocytes play an important role in the coupling between neuronal activity and brain blood flow via their capacity to "sense" neuronal activity and transmit that information to parenchymal arterioles. Here we show another role for astrocytes in neurovascular coupling: the ability to act as a signaling conduit for the vitally important process of upstream(More)
Regional elevations in cerebral blood flow (CBF) often occur in response to localized increases in cerebral neuronal activity. An ever expanding literature has linked this neurovascular coupling process to specific signaling pathways involving neuronal synapses, astrocytes and cerebral arteries and arterioles. Collectively, these structures are termed the(More)
We hypothesized that chronic hyperglycemia has a detrimental effect on neurovascular coupling in the brain and that this may be linked to protein kinase C (PKC)-mediated phosphorylation. Therefore, in a rat model of streptozotocin-induced chronic type 1 diabetes mellitus (T1DM), and in nondiabetic (ND) controls, we monitored pial arteriole diameter changes(More)
Aneurysmal subarachnoid hemorrhage (SAH) is a potentially devastating clinical problem. Despite advances in the diagnosis and treatment of SAH, outcome remains unfavorable. An increased inflammatory state, one that is characterized by enhanced leukocyte trafficking has been reported to contribute to neuronal injury in association with multiple brain(More)
We examined the neuroprotective efficacy associated with post-ischemic vascular adhesion protein-1 (VAP-1) blockade in rats subjected to transient (1 h) middle cerebral artery occlusion (MCAo). We compared saline-treated control rats to rats treated with a highly selective VAP-1 inhibitor, LJP-1586 [Z-3-fluoro-2-(4-methoxybenzyl) allylamine hydrochloride].(More)
ATP is thought to be released to the extracellular compartment by neurons and astrocytes during neural activation. We examined whether ATP exerts its effect of promoting pial arteriolar dilation (PAD) directly or upon conversion (via ecto-nucleotidase action) to AMP and adenosine. Blockade of extracellular direct ATP to AMP conversion, with ARL-67156,(More)
Multiple, perhaps interactive, mechanisms participate in the linkage between increased neural activity and cerebral vasodilation. In the present study, we assessed whether neural activation-related pial arteriolar dilation (PAD) involved interactions among adenosine (Ado) A(2) receptors (A(2)Rs), large-conductance Ca(2+)-operated K(+) (BK(Ca)) channels, and(More)