Learn More
While the influence of caffeine on the regulation of brain perfusion has been the subject of multiple publications, the mechanisms involved in that regulation remain unclear. To some extent, that uncertainty is a function of a complex interplay of processes arising from multiple targets of caffeine located on a variety of different cells, many of which have(More)
Seizures in focal epilepsies are sustained by a highly synchronous neuronal discharge that arises at restricted brain sites and subsequently spreads to large portions of the brain. Despite intense experimental research in this field, the earlier cellular events that initiate and sustain a focal seizure are still not well defined. Their identification is(More)
Regional elevations in cerebral blood flow (CBF) often occur in response to localized increases in cerebral neuronal activity. An ever expanding literature has linked this neurovascular coupling process to specific signaling pathways involving neuronal synapses, astrocytes and cerebral arteries and arterioles. Collectively, these structures are termed the(More)
The oscillatory pattern of pial arterioles, i.e. vasomotion, has been described since early 1980s, but the impact of neural activation on such oscillations has never been formally examined. Sciatic nerve stimulation, a well characterized model for studying neurovascular coupling (NVC), leads to a neural activity-related increase of pial arteriolar diameter(More)
We hypothesized that chronic hyperglycemia has a detrimental effect on neurovascular coupling in the brain and that this may be linked to protein kinase C (PKC)-mediated phosphorylation. Therefore, in a rat model of streptozotocin-induced chronic type 1 diabetes mellitus (T1DM), and in nondiabetic (ND) controls, we monitored pial arteriole diameter changes(More)
Astrocytes play an important role in the coupling between neuronal activity and brain blood flow via their capacity to "sense" neuronal activity and transmit that information to parenchymal arterioles. Here we show another role for astrocytes in neurovascular coupling: the ability to act as a signaling conduit for the vitally important process of upstream(More)
Aneurysmal subarachnoid hemorrhage (SAH) is a potentially devastating clinical problem. Despite advances in the diagnosis and treatment of SAH, outcome remains unfavorable. An increased inflammatory state, one that is characterized by enhanced leukocyte trafficking has been reported to contribute to neuronal injury in association with multiple brain(More)
Estrogen replacement therapy (ERT) elicits a deleterious, instead of protective, effect on neuropathology in diabetic ovariectomized (OVX) rats subjected to cerebral ischemia. This transformation may be linked to an estrogen-associated increase in function of the receptor for advanced glycation end-products (RAGE). Moreover, under diabetic conditions,(More)
In this study, we tested the hypothesis that the documented transformation of 17beta-estradiol (E2) from a counterinflammatory hormone in nondiabetic (ND) rats to a proinflammatory agent in rats with diabetes mellitus (DM) is due to an enhanced contribution from the receptor for advanced glycation end products (RAGE). Rhodamine 6G-labeled leukocytes were(More)
S100B is an astrocyte-derived protein that can act through the receptor for advanced glycation endproducts (RAGE) to mediate either "trophic" or "toxic" responses. Its levels increase in many neurological conditions with associated microvascular dysregulation, such as subarachnoid hemorrhage (SAH) and traumatic brain injury. The role of S100B in the(More)