Francesco Solera

Learn More
In this paper we present a novel approach to detect groups in ego-vision scenarios. People in the scene are tracked through the video sequence and their head pose and 3D location are estimated. Based on the concept of f-formation, we define with the orientation and distance an inherently social pairwise feature that describes the affinity of a pair of(More)
Online Multiple Target Tracking (MTT) is often addressed within the tracking-by-detection paradigm. Detections are previously extracted independently in each frame and then objects trajectories are built by maximizing specifically designed coherence functions. Nevertheless, ambiguities arise in presence of occlusions or detection errors. In this paper we(More)
Most of the behaviors people exhibit while being part of a crowd are social processes that tend to emerge among groups and as a consequence, detecting groups in crowds is becoming an important issue in modern behavior analysis. We propose a supervised correlation clustering technique that employs Structural SVM and a proxemic based feature to learn how to(More)
Modern crowd theories agree that collective behavior is the result of the underlying interactions among small groups of individuals. In this work, we propose a novel algorithm for detecting social groups in crowds by means of a Correlation Clustering procedure on people trajectories. The affinity between crowd members is learned through an online(More)
Conventional experiments on MTT are built upon the belief that fixing the detections to different trackers is sufficient to obtain a fair comparison. In this work we argue how the true behavior of a tracker is exposed when evaluated by varying the input detections rather than by fixing them. We propose a systematic and reproducible protocol and a MATLAB(More)
To help accelerate progress in multi-target, multi-camera tracking systems, we present (i) a new pair of precision-recall measures of performance that treats errors of all types uniformly and emphasizes correct identification over sources of error; (ii) the largest fully-annotated and calibrated data set to date with more than 2 million frames of 1080p,(More)
  • 1