Francesco Sciortino

H Eugene Stanley18
Nicolas Giovambattista8
18H Eugene Stanley
8Nicolas Giovambattista
Learn More
Nanoscale or colloidal particles are important in many realms of science and technology. They can dramatically change the properties of materials, imparting solid-like behaviour to a wide variety of complex fluids. This behaviour arises when particles aggregate to form mesoscopic clusters and networks. The essential component leading to aggregation is an(More)
The pronounced increases in isothermal compressibility, isobaric heat capacity, and in the magnitude of the thermal expansion coefficient of liquid water upon supercooling have been interpreted either in terms of a continuous, retracing spinodal curve bounding the superheated, stretched, and supercooled states of liquid water, or in terms of a metastable,(More)
We report a computer simulation study of the glass transition for water using the extended simple point charge potential. To mimic the difference between standard and hyperquenched glass, we generate glassy configurations with different cooling rates, and we calculate the temperature dependence of the specific heat on heating. The absence of crystallization(More)
We present further evidence that gelation is an arrested phase separation in attractive colloid-polymer mixtures, based on a method combining confocal microscopy experiments with numerical simulations recently established in Nature 453, 499 (2008). Our results are independent of the form of the interparticle attractive potential, and therefore should apply(More)
The energy landscape approach has been useful to help understand the dynamic properties of supercooled liquids and the connection between these properties and thermodynamics. The analysis in numerical models of the inherent structure (IS) trajectories-the set of local minima visited by the liquid-offers the possibility of filtering out the vibrational(More)
It has been suggested that high-density amorphous (HDA) ice is a structurally arrested form of high-density liquid (HDL) water, while low-density amorphous ice is a structurally arrested form of low-density liquid (LDL) water. Recent experiments and simulations have been interpreted to support the possibility of a second distinct high-density structural(More)
Nanoparticles tethered with DNA strands are promising building blocks for bottom-up nanotechnology, and a theoretical understanding is important for future development. Here we build on approaches developed in polymer physics to provide theoretical descriptions for the equilibrium clustering and dynamics, as well as the self-assembly kinetics of DNA-linked(More)
One of the most controversial hypotheses for explaining the origin of the thermodynamic anomalies characterizing liquid water postulates the presence of a metastable second-order liquid-liquid critical point [1] located in the " no-man's land " [2]. In this scenario, two liquids with distinct local structure emerge near the critical temperature.(More)
We study a dynamical model of a system with two disparate energy scales, and focus on the kinetics of phase separation. In this model, nearest-neighbor monomers can interact with one of two quite distinct energies, thereby describing a system with, e. g., van der Waals and hydrogen bond interactions. While the model has been described by an efFective Ising(More)
We calculate the configurational entropy S conf for the SPC/E model of water for state points covering a large region of the (T, ρ) plane. We find that (i) the (T, ρ) dependence of S conf correlates with the diffusion constant and (ii) that the line of maxima in S conf tracks the line of density maxima. Our simulation data indicate that the dynamics are(More)