Learn More
In recent years, hardware Trojans have drawn the attention of governments and industry as well as the scientific community. One of the main concerns is that integrated circuits, e.g., for military or critical-infrastructure applications, could be maliciously manipulated during the manufacturing process, which often takes place abroad. However, since there(More)
Security analysis is a crucial concern in the design of hardware and software systems, yet there is a distinct lack of automated methodologies. In this paper, we remedy this situation for the verification of software countermeasure implementations. In this context, verifying the security of a protected implementation against side-channel attacks corresponds(More)
The market for RFID technology has grown rapidly over the past few years. Going along with the proliferation of RFID technology is an increasing demand for secure and privacy-preserving applications. In this context, RFID tags need to be protected against physical attacks such as Differential Power Analysis (DPA) and fault attacks. The main obstacles(More)
The design of lightweight block ciphers has been a very active research topic over the last years. However, the lack of comparative source codes generally makes it hard to evaluate the extent to which different ciphers actually reach their low-cost goals, on different platforms. This paper reports on an initiative aimed to partially relax this issue. First,(More)
In this paper, we propose a new Authenticated Lightweight E ncryption algorithm coined ALE. The basic operation of ALE is the AES round transformation and the AES-128 key schedule. ALE is an online single-pass authenticated encryption algorithm that supports optional associated data. Its security relies on using nonces. We provide an optimized low-area(More)
In cryptography, side channel attacks, such as power analysis, attempt to uncover secret information from the physical implementation of cryptosystems rather than exploiting weaknesses in the cryptographic algorithms themselves. The design and implementation of physically secure cryptosystems is a challenge for both hardware and software designers.(More)
MOS Current Mode Logic (MCML) is one of the most promising logic style to counteract power analysis attacks. Unfortunately, the static power consumption of MCML standard cells is significantly higher compared to equivalent functions implemented using static CMOS logic. As a result, the use of such a logic style is very limited in portable devices.(More)
In recent years, hardware Trojans have drawn the attention of governments and industry as well as the scientific community. One of the main concerns is that integrated circuits, e.g., for military or critical-infrastructure applications, could be maliciously manipulated during the manufacturing process, which often takes place abroad. However, since there(More)
The continuous scaling of VLSI technology and the aggressive use of low power strategies (such as subthreshold voltage) make it possible to implement standard cryptographic primitives within the very limited circuit and power budget of RFID devices. On the other hand, such cryptographic implementations raise concerns regarding their vulnerability to both(More)
Malicious alterations of integrated circuits (ICs), introduced during either the design or fabrication process, are increasingly perceived as a serious concern by the global semiconductor industry. Such rogue alterations often take the form of a " hardware Trojan, " which may be activated from remote after the compromised chip or system has been deployed in(More)