Learn More
In recent years, hardware Trojans have drawn the attention of governments and industry as well as the scientific community. One of the main concerns is that integrated circuits, e.g., for military or critical-infrastructure applications, could be maliciously manipulated during the manufacturing process, which often takes place abroad. However, since there(More)
The market for RFID technology has grown rapidly over the past few years. Going along with the proliferation of RFID technology is an increasing demand for secure and privacy-preserving applications. In this context, RFID tags need to be protected against physical attacks such as Differential Power Analysis (DPA) and fault attacks. The main obstacles(More)
Security analysis is a crucial concern in the design of hardware and software systems, yet there is a distinct lack of automated methodologies. In this paper, we remedy this situation for the verification of software countermeasure implementations. In this context, verifying the security of a protected implementation against side-channel attacks corresponds(More)
In this paper, we propose a new Authenticated Lightweight E ncryption algorithm coined ALE. The basic operation of ALE is the AES round transformation and the AES-128 key schedule. ALE is an online single-pass authenticated encryption algorithm that supports optional associated data. Its security relies on using nonces. We provide an optimized low-area(More)
The design of lightweight block ciphers has been a very active research topic over the last years. However, the lack of comparative source codes generally makes it hard to evaluate the extent to which different ciphers actually reach their low-cost goals, on different platforms. This paper reports on an initiative aimed to partially relax this issue. First,(More)
In cryptography, side channel attacks, such as power analysis, attempt to uncover secret information from the physical implementation of cryptosystems rather than exploiting weaknesses in the cryptographic algorithms themselves. The design and implementation of physically secure cryptosystems is a challenge for both hardware and software designers.(More)
Allowing good performances on different platforms is an important criteria for the selection of the future sha-3 standard. In this paper, we consider the compact implementations of blake, Grøstl, jh, Keccak and Skein on recent fpga devices. Our results bring an interesting complement to existing analyzes, as most previous works on fpga implementations of(More)
Power analysis attacks are a serious treat for implementations of modern cryptographic algorithms. Masking is a particularly appealing countermeasure against such attacks since it increases the security to a well quantifiable level and can be implemented without modifying the underlying technology. Its main drawback is the performance overhead it implies.(More)
MOS Current Mode Logic (MCML) is one of the most promising logic style to counteract power analysis attacks. Unfortunately, the static power consumption of MCML standard cells is significantly higher compared to equivalent functions implemented using static CMOS logic. As a result, the use of such a logic style is very limited in portable devices.(More)