Francesco Puosi

Learn More
The elastic models of the glass transition relate the increasing solidity of the glassforming systems with the huge slowing down of the structural relaxation and the viscous flow. The solidity is quantified in terms of the instantaneous shear modulus G(∞), i.e., the immediate response to a step change in the strain. By molecular-dynamics simulations of a(More)
We study stress time series caused by plastic avalanches in athermally sheared disordered materials. Using particle-based simulations and a mesoscopic elastoplastic model, we analyze system size and shear-rate dependence of the stress-drop duration and size distributions together with their average temporal shape. We find critical exponents different from(More)
The slow relaxation, the diffusivity, and the fast cage-dynamics of a melt of fully flexible unentangled polymer chains is studied by molecular-dynamics simulations. States with different nonbonding potential, chain length, density and temperature are considered. The scaling between the slow dynamics and the fast dynamics, as characterized by the amplitude(More)
The spatial correlations of the monomer displacements are studied via molecular-dynamics simulations of a melt of fully flexible, unentangled polymer chains with different length, interacting potential, density, and temperature. Both the scalar and the vector characters of the correlations are considered and their extension quantified in terms of suitable(More)
We show that the fragility m , the steepness of the viscosity and relaxation time close to the vitrification, increases with the degree of elastic softening, i.e. the decrease of the elastic modulus with increasing temperature, in a universal way. This provides a novel connection between the thermodynamics, via the modulus, and the kinetics. The finding is(More)
The universal scaling between the average slow relaxation/transport and the average picosecond rattling motion inside the cage of the first neighbors has been evidenced in a variety of numerical simulations and experiments. Here, we first show that the scaling does not need information concerning the arbitrarily-defined glass transition region and relies on(More)
We describe in detail the model used in the manuscript and explain the our numerical implementation set to run in parallel on GPUs. We provide also some details about the post-processing and analysis of the raw simulation results. We study the scalar elasto-plastic model in two (2d) and three dimensions (3d) under the presence of an imposed shear-rate,(More)
Although the notion of mechanical noise is expected to play a key role in the non-linear rheology of athermally sheared amorphous systems, its characterization has so far remained elusive. Here, we show using molecular dynamic simulations that in spite of the presence of strong spatio-temporal correlations in the system, the local stress exhibits normal(More)
We investigate by molecular-dynamics simulations, the fast mobility-the rattling amplitude of the particles temporarily trapped by the cage of the neighbors-in mildly supercooled states of dense molecular (linear trimers) and atomic (binary mixtures) liquids. The mixture particles interact by the Lennard-Jones potential. The non-bonded particles of the(More)
The competition between the connectivity and the local or global order in model fully flexible chain molecules is investigated by molecular-dynamics simulations. States with both missing (melts) and high (crystal) global order are considered. Local order is characterized within the first coordination shell (FCS) of a tagged monomer and found to be lower(More)