Francesco Prudenzano

Learn More
An accurate design of an innovative fiber optic temperature sensor is developed. The sensor is based on a cascade of three microstructured optical fibers (MOFs). In the first one a suitable cascade of long period gratings is designed into the core. A single mode intermediate and a rare-earth activated Fabry-Perot optical cavity are the other two sensor MOF(More)
A dedicated 3D numerical model based on coupled mode theory and solving the rate equations has been developed to analyse, design and optimize an optical amplifier obtained by using a tapered fiber and a Er³⁺-doped chalcogenide microsphere. The simulation model takes into account the main transitions among the erbium energy levels, the amplified spontaneous(More)
This paper deals with design and refinement criteria of erbium doped hole-assisted optical fiber amplifiers for applications in the third band of fiber optical communication. The amplifier performance is simulated via a model which takes into account the ion population rate equations and the optical power propagation. The electromagnetic field profile of(More)
Different strategies for designing optical couplers, optimized to enhance the pump absorption in the rare-earth-doped core of microstructured fiber lasers, are illustrated. Three kinds/configurations of optical couplers have been designed and compared as examples of the different design strategies which can be followed. Their effectiveness to enhance the(More)
Transparent glass-ceramics, activated by luminescent species, present an important class of photonic materials because their specific optical, spectroscopic and structural properties. Several top-down and bottom-up techniques have been developed for transparent glass ceramic fabrication. Among them, laser material processing plays an important role and many(More)
A time domain analysis of light amplification in an erbium doped silica-titania planar waveguide is reported. The investigation is performed by means of a home-made computer code which exploits the auxiliary differential equation scheme combined with the finite difference time domain technique to solve Maxwell's equations and the rate equations. The(More)
A mid-IR amplifier consisting of a tapered chalcogenide fiber coupled to an Er3þ-doped chalcogenide microsphere has been optimized via a particle swarm optimization (PSO) approach. More precisely, a dedicated three-dimensional numerical model, based on the coupled mode theory and solving the rate equations, has been integrated with the PSO procedure. The(More)
In this review paper some recent advances on optical fiber sensors are reported. In particular, fiber Bragg grating (FBG), long period gratings (LPGs), evanescent field and hollow core optical fiber sensors are mentioned. Examples of recent optical fiber sensors for the measurement of strain, temperature, displacement, air flow, pressure, liquid-level,(More)
A Nd(3+)-doped tellurite-glass terrace microsphere was fabricated, and its laser characteristics using free-space pumping were investigated. A localized laser heating technique was used for preparing the 29-µm-diameter microsphere. The uncoated sphere exhibited many laser lines with 1.3-mW threshold. Fewer laser lines were observed after terrace formation.(More)
The use of resonant whispering gallery modes (WGMs) for sensing exhibits various drawbacks and critical points related to the microsphere and tapered optical fiber fabrication tolerance. The uncertainty on the fiber taper and microsphere geometry or the gap between the microsphere and the fiber taper can complicate or limit the actual use of these devices(More)