Francesco Prudenzano

Learn More
An accurate design of an innovative fiber optic temperature sensor is developed. The sensor is based on a cascade of three microstructured optical fibers (MOFs). In the first one a suitable cascade of long period gratings is designed into the core. A single mode intermediate and a rare-earth activated Fabry-Perot optical cavity are the other two sensor MOF(More)
Transparent glass-ceramics, activated by luminescent species, present an important class of photonic materials because their specific optical, spectroscopic and structural properties. Several top-down and bottom-up techniques have been developed for transparent glass ceramic fabrication. Among them, laser material processing plays an important role and many(More)
—The characteristics of periodic multilayered near-field superlenses are analyzed and optimized, using the dispersion relation derived from an effective medium theory and the transfer function in the spectral domain. The k z-k x and k z-k x contours are used to explain and predict the spectral width, amplitude and phase of the transfer function. Superlenses(More)
Glass-ceramics are nanocomposite materials which offer specific characteristics of capital importance in photonics. This kind of two-phase materials is constituted by nanocrystals embedded in a glass matrix and the respective composition and volume fractions of crystalline and amorphous phase determine the properties of the glass-ceramic. Among these(More)
—In this paper, the feasibility of Substrate Integrated Waveguide (SIW) couplers, fabricated using single-layer TACONIC RF-35 dielectric substrate is investigated. The couplers have been produced employing a standard PCB process. The choice of the TACONIC RF-35 substrate as alternative to other conventional materials is motivated by its lower cost and high(More)
  • 1