Francesco Padormo

Learn More
Localising activity in the human midbrain with conventional functional MRI (fMRI) is challenging because the midbrain nuclei are small and located in an area that is prone to physiological artefacts. Here we present a replicable and automated method to improve the detection and localisation of midbrain fMRI signals. We designed a visual fMRI task that was(More)
A spatially resolved extended phase graph (SR-EPG) framework is proposed for prediction of echo amplitudes in the presence of spatially variable radio frequency (RF) fields. The method may be used to examine any regularly repeating pulse sequence and provides a design framework for parallel transmission (PTx) systems; in this work signal homogeneity in(More)
PURPOSE Parallel transmission (PTx) offers spatial control of radiofrequency (RF) fields that can be used to mitigate nonuniformity effects in high-field MRI. In practice, the ability to achieve uniform RF fields by static shimming is limited by the typically small number of channels. Thus, tailored RF pulses that mix gradient with RF encoding have been(More)
The development of MRI systems operating at or above 7 T has provided researchers with a new window into the human body, yielding improved imaging speed, resolution and signal-to-noise ratio. In order to fully realise the potential of ultrahigh-field MRI, a range of technical hurdles must be overcome. The non-uniformity of the transmit field is one of such(More)
PURPOSE This paper presents Precise Radiofrequency Inference from Multiple Observations (PRIMO), a comprehensive reconstruction framework for calibrating MRI systems with parallel transmit and parallel receive radiofrequency capabilities. THEORY AND METHODS To date, the vast majority of radiofrequency (RF) calibration methods have considered transmit and(More)
PURPOSE The goal of the Developing Human Connectome Project is to acquire MRI in 1000 neonates to create a dynamic map of human brain connectivity during early development. High-quality imaging in this cohort without sedation presents a number of technical and practical challenges. METHODS We designed a neonatal brain imaging system (NBIS) consisting of a(More)
The use of multiple transmission channels (known as Parallel Transmission, or PTx) provides increased control of the MRI signal formation process. This extra flexibility comes at a cost of uncertainty of the power deposited in the patient under examination: the electric fields produced by each transmitter can interfere in such a way to lead to excessively(More)
Cardiac magnetic resonance imaging (MRI) at high field presents challenges because of the high specific absorption rate and significant transmit field (B1+ ) inhomogeneities. Parallel transmission MRI offers the ability to correct for both issues at the level of individual radiofrequency (RF) pulses, but must operate within strict hardware and safety(More)
PURPOSE Parallel transmission (PTx) requires knowledge of the B1+ produced by each element. However, B1+ mapping can be challenging when transmit fields exhibit large dynamic range. This study presents a method to produce high quality relative B1+ maps when this is the case. THEORY AND METHODS The proposed technique involves the acquisition of spoiled(More)
Electroencephalographic recordings from the developing human brain are characterized by spontaneous neuronal bursts, the most common of which is the delta brush. Although similar events in animal models are known to occur in areas of immature cortex and drive their development, their origin in humans has not yet been identified. Here, we use simultaneous(More)