Learn More
Hepatic gluconeogenesis is absolutely required for survival during prolonged fasting or starvation, but is inappropriately activated in diabetes mellitus. Glucocorticoids and glucagon have strong gluconeogenic actions on the liver. In contrast, insulin suppresses hepatic gluconeogenesis. Two components known to have important physiological roles in this(More)
Overexpression of the PED/PEA-15 protein in muscle and adipose cells increases glucose transport and impairs further insulin induction. Like glucose transport, protein kinase C (PKC)-alpha and -beta are also constitutively activated and are not further stimulatable by insulin in L6 skeletal muscle cells overexpressing PED (L6(PED)). PKC-zeta features no(More)
The antiapoptotic protein PED/PEA-15 features an Akt phosphorylation motif upstream from Ser(116). In vitro, recombinant PED/PEA-15 was phosphorylated by Akt with a stoichiometry close to 1. Based on Western blotting with specific phospho-Ser(116) PED/PEA-15 antibodies, Akt phosphorylation of PED/PEA-15 occurred mainly at Ser(116). In addition, a mutant of(More)
pp120/HA4 is a hepatocyte membrane glycoprotein phosphorylated by the insulin receptor tyrosine kinase. In this study, we have investigated the role of pp120/HA4 in insulin action. Transfection of antisense pp120/HA4 cDNA in H35 hepatoma cells resulted in inhibition of pp120/HA4 expression and was associated with a 2-3-fold decrease in the rate of insulin(More)
The hallmarks of type 2 diabetes are impaired insulin action in peripheral tissues and decreased pancreatic beta-cell function. Classically, the two defects have been viewed as separate entities, with insulin resistance arising primarily from impaired insulin-dependent glucose uptake in skeletal muscle, and beta-cell dysfunction arising from impaired(More)
Although chronic hyperglycemia reduces insulin sensitivity and leads to impaired glucose utilization, short term exposure to high glucose causes cellular responses positively regulating its own metabolism. We show that exposure of L6 myotubes overexpressing human insulin receptors to 25 mm glucose for 5 min decreased the intracellular levels of(More)
Current evidence indicates that chemical pollutants may interfere with the homeostatic control of nutrient metabolism, thereby contributing to the increased prevalence of metabolic disorders. Bisphenol-A (BPA) is a lipophilic compound contained in plastic which is considered a candidate for impairing energy and glucose metabolism. We have investigated the(More)
Overexpression of the ped/pea-15 gene is a common feature of type 2 diabetes. In the present work, we show that transgenic mice ubiquitously overexpressing ped/pea-15 exhibited mildly elevated random-fed blood glucose levels and decreased glucose tolerance. Treatment with a 60% fat diet led ped/pea-15 transgenic mice to develop diabetes. Consistent with(More)
AIMS/HYPOTHESIS Overexpression of the gene encoding phosphoprotein enriched in astrocytes 15 (PEA15), also known as phosphoprotein enriched in diabetes (PED), causes insulin resistance and diabetes in transgenic mice and has been observed in type 2 diabetic individuals. The aim of this study was to investigate whether PEA15 overexpression occurs in(More)
Platelet components have found successful clinical utilization to initiate or to accelerate tissue-repair mechanisms. However, the molecular pathways by which platelet factors contribute to tissue regeneration have not been fully elucidated. We have studied the effect of thrombin-activated platelets (TAPs) on cell growth in vivo and in cultured cell(More)