Learn More
The presented study details a combined experimental and computational method to assess and compare the mechanical behavior of the main body of 4 different stent graft designs. The mechanical response to a flat plate compression and radial crimping of the devices is derived and related to geometrical and material features of different stent designs. The(More)
There is a growing interest in virtual tools to assist clinicians in evaluating different procedures and devices for endovascular treatment. In the present study we use finite element analysis to investigate the influence of stent design and vessel geometry for stent assisted coiling of intracranial aneurysms. Nine virtual stenting procedures were(More)
Carotid artery stenting is emerging as an alternative technique to surgery for the treatment of symptomatic severe carotid stenosis. Clinical and experimental evidence demonstrates that both plaque morphology and biomechanical changes due to the device implantation can be possible causes of an unsuccessful treatment. In order to gain further insights of the(More)
The presented study details the virtual deployment of a bifurcated stent graft (Medtronic Talent) in an Abdominal Aortic Aneurysm model, using the finite element method. The entire deployment procedure is modeled, with the stent graft being crimped and bent according to the vessel geometry, and subsequently released. The finite element results are validated(More)
In recent years the role of FSI (fluid-structure interaction) simulations in the analysis of the fluid-mechanics of heart valves is becoming more and more important, being able to capture the interaction between the blood and both the surrounding biological tissues and the valve itself. When setting up an FSI simulation, several choices have to be made to(More)
Here, we consider the issue of generating a suitable controlled environment for the evaluation of phase contrast (PC) MRI measurements. The computational framework, tailored to build synthetic datasets, is based on a two-step approach, i.e., define and implement (1) an accurate CFD model and (2) an image generator able to mime the overall outcomes of a PC(More)
The ApoE(-)(/)(-) mouse is a common small animal model to study atherosclerosis, an inflammatory disease of the large and medium sized arteries such as the carotid artery. It is generally accepted that the wall shear stress, induced by the blood flow, plays a key role in the onset of this disease. Wall shear stress, however, is difficult to derive from(More)
PURPOSE Carotid artery stenting (CAS) is an alternative procedure for the treatment of severely stenosed carotid artery lesions in high-risk patients. Appropriate patient selection and stent design are paramount to achieve a low stroke and death rate in these complex high-risk procedures. This study introduces and evaluates a novel virtual,(More)
Three-dimensional strain estimation might improve the detection and localization of high strain regions in the carotid artery for identification of vulnerable plaques. This study compares 2D vs. 3D displacement estimation in terms of radial and circumferential strain using simulated ultrasound images of a patient specific 3D atherosclerotic carotid artery(More)
BACKGROUND Coronary hemodynamics and physiology specific for bifurcation lesions was not well understood. To investigate the influence of the bifurcation angle on the intracoronary hemodynamics of side branch (SB) lesions computational fluid dynamics simulations were performed. METHODS A parametric model representing a left anterior descending-first(More)