Learn More
This paper presents the design and experimental testing of the robotic elbow exoskeleton NEUROBOTICS Elbow Exoskeleton (NEUROExos). The design of NEUROExos focused on three solutions that enable its use for poststroke physical rehabilitation. First, double-shelled links allow an ergonomic physical human-robot interface and, consequently, a comfortable(More)
A compliant 2×2 tactile sensor array was developed and investigated for roughness encoding. State of the art cross shape 3D MEMS sensors were integrated with polymeric packaging providing in total 16 sensitive elements to external mechanical stimuli in an area of about 20 mm(2), similarly to the SA1 innervation density in humans. Experimental analysis of(More)
This paper presents the development of new transmission components and position controller of the NEURARM hydraulic actuation unit as critical components of a novel robotic arm specifically designed to perform joint experiments between neuroscience and robotics. NEURARM replicates the main functions and characteristics of the human arm during the execution(More)
Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of(More)
This work describes the neuro-robotics paradigm: the fusion of neuroscience and robotics. The fusion of neuroscience and robotics, called neuro-robotics, is fundamental to develop robotic systems to be used in functional support, personal assistance and neuro-rehabilitation. While usually the robotic device is considered as a "tool" for neuroscientific(More)
We present a sensor technology for the measure of the physical human-robot interaction pressure developed in the last years at Scuola Superiore Sant'Anna. The system is composed of flexible matrices of opto-electronic sensors covered by a soft silicone cover. This sensory system is completely modular and scalable, allowing one to cover areas of any sizes(More)
This paper introduces a novel exoskeleton device (HANDEXOS) for the rehabilitation of the hand for post-stroke patients. The nature of the impaired hand can be summarized in a limited extension, abduction and adduction leaving the fingers in a flexed position, so the exoskeleton goal is to train a safe extension motion from the typical closed position of(More)
This paper presents the development of a portable version of the robotic elbow exoskeleton NEUROExos, designed for the treatment of stroke survivors in acute/sub-acute phases. The design was improved by a novel Series Elastic Actuation (SEA) system. The system implements two control modalities: a near-zero output impedance torque control and a(More)
In this work, we present the development of an in-shoe device to monitor plantar pressure distribution for gait analysis. The device consists in a matrix of 64 sensitive elements, integrated with in-shoe electronics and battery which provide an high-frequency data acquisition, wireless transmission and an average autonomy of 7 hours in continuous working(More)
We present the kinematic design and actuation mechanics of a wearable exoskeleton for hand rehabilitation of post-stroke. Our design method is focused on achieving maximum safety, comfort and reliability in the interaction, and allowing different users to wear the device with no manual regulations. In particular, we propose a kinematic and actuation(More)