Learn More
Biocatalytic transformations have emerged as a viable alternative to other asymmetric chemical methods due to the intrinsic high stereoselectivity of the enzymes and the mild reaction conditions. Just a decade ago, the reaction scope of applicable biotransformations for organic synthesis was limited to a handful of reaction types. Tremendous progress has(More)
The combination of two cofactor self-sufficient biocatalytic cascade modules allowed the successful transformation of cyclohexanol into the nylon-6 monomer 6-aminohexanoic acid at the expense of only oxygen and ammonia. A hitherto unprecedented carboxylic acid capping strategy was introduced to minimize the formation of the dead-end intermediate(More)
Driving the machinery: A biocatalytic redox-neutral cascade for the preparation of terminal primary amines from primary alcohols at the expense of ammonia has been established in a one-pot one-step method. Applying this artificial biocatalyst network, long-chain 1,ω-alkanediols were converted into diamines, which are building blocks for polymers, in up to(More)
The combination of an oxidation and a reduction in a cascade allows performing transformations in a very economic and efficient fashion. The challenge is how to combine an oxidation with a reduction in one pot, either by running the two reactions simultaneously or in a stepwise fashion without isolation of intermediates. The broader availability of various(More)
This account focuses on the application of ω-transaminases, lyases, and oxidases for the preparation of amines considering mainly work from our own lab. Examples are given to access α-chiral primary amines from the corresponding ketones as well as terminal amines from primary alcohols via a two-step biocascade. 2,6-Disubstituted piperidines, as examples for(More)
The search for affordable, green biocatalytic processes is a challenge for chemicals manufacture. Redox biotransformations are potentially attractive, but they rely on unstable and expensive nicotinamide coenzymes that have prevented their widespread exploitation. Stoichiometric use of natural coenzymes is not viable economically, and the instability of(More)
α-Chiral amines are key intermediates for the synthesis of a plethora of chemical compounds at industrial scale. We present a biocatalytic hydrogen-borrowing amination of primary and secondary alcohols that allows for the efficient and environmentally benign production of enantiopure amines. The method relies on a combination of two enzymes: an alcohol(More)
An iridium catalysed oxidation was coupled concurrently to an asymmetric biocatalytic reduction in one-pot; thus it was shown for the first time that iridium- and alcohol dehydrogenase-catalysed redox reactions are compatible. As a model system racemic chlorohydrins were transformed to enantioenriched chlorohydrins via an oxidation-asymmetric reduction(More)
Enzyme promiscuity is generally accepted as the ability of an enzyme to catalyse alternate chemical reactions besides the 'natural' one. In this paper peroxidases were shown to catalyse the cleavage of a C=C double bond adjacent to an aromatic moiety for selected substrates at the expense of molecular oxygen at an acidic pH. It was clearly shown that the(More)
The biomimetic catalytic oxidations of the dinuclear and trinuclear copper(II) complexes versus two catechols, namely, D-(+)-catechin and L-( - )-epicatechin to give the corresponding quinones are reported. The unstable quinones were trapped by the nucleophilic reagent, 3-methyl-2-benzothiazolinone hydrazone (MBTH), and have been calculated the molar(More)