Learn More
Longitudinal bone growth occurs at the growth plate by endochondral ossification. Within the growth plate, chondrocyte proliferation, hypertrophy, and cartilage matrix secretion result in chondrogenesis. The newly formed cartilage is invaded by blood vessels and bone cells that remodel the newly formed cartilage into bone tissue. This process of(More)
Insulin-like growth factor-I (IGF-I) is an important regulator of endochondral ossification. However, little is known about the signaling pathways activated by IGF-I in growth plate chondrocytes. We have previously shown that NF-kappaB-p65 facilitates growth plate chondrogenesis. In this study, we first cultured rat metatarsal bones with IGF-I and/or(More)
The characteristics of human prostasomal vesicles have been investigated by three methods, namely, dynamic light scattering, transfer of a lipophylic fluorescent dye (R18), and electron microscope appearance. The vesicle preparations were stable for a long time and their diameters were in the range of 200 nm. The exposure to acidic pH values (about 5)(More)
Reduced caloric intake in mammals causes reduced skeletal growth and GH insensitivity. However, the underlying molecular mechanisms are not fully elucidated. The aim of this study was to determine whether the increased activity of fibroblast growth factor 21 (FGF21) during chronic undernutrition in mice causes GH insensitivity and growth failure. After 4 wk(More)
In the past, the growth hormone (GH)-insulin-like growth factor 1 (IGF-1) axis was often considered to be the main system that regulated childhood growth and, therefore, determined short stature and tall stature. However, findings have now revealed that the GH-IGF-1 axis is just one of many regulatory systems that control chondrogenesis in the growth plate,(More)
NF-kappaB is a group of transcription factors involved in cell proliferation, differentiation, and apoptosis. Mice deficient in the NF-kappaB subunits p50 and p52 have retarded growth, suggesting that NF-kappaB is involved in bone growth. Yet, it is not clear whether the reduced bone growth of these mice depends on the lack of NF-kappaB activity in growth(More)
The phosphorylation state of pocket proteins during the cell cycle is determined at least in part by an equilibrium between inducible cyclin-dependent kinases (CDKs) and serine/threonine protein phosphatase 2A (PP2A). Two trimeric holoenzymes consisting of the core PP2A catalytic/scaffold dimer and either the B55α or PR70 regulatory subunit have been(More)
A mobile NMR probe has been used as a non-destructive and non-invasive tool for water content analysis on wood samples. The porosity index, express as the fraction of the sensitivity volume of the probe occupied by water, is here proposed as an alternative to the moisture content index, namely the amount of water mass with respect to the mass of dried(More)
The Ca2+-sensing receptor (CaR) is a G protein-coupled receptor expressed in many mammalian tissues, including the long bone's growth plate. CaR knockout mice exhibit growth retardation, suggesting that CaR may promote skeletal growth. However, the complex phenotype of these knockout mice, which includes hyperparathyroidism, hypercalcemia, and(More)
During embryogenesis, the expression of mammalian stanniocalcin (STC1) in the appendicular skeleton suggests its involvement in the regulation of longitudinal bone growth. Such a role is further supported by the presence of dwarfism in mice overexpressing STC1. Yet, the STC 1 inhibitory effect on growth may be related to both postnatal metabolic(More)